全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于投影和树的闭合频繁模式算法*

, PP. 6-11

Keywords: 闭合频繁模式,数据挖掘,投影和树

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于投影和树的闭合频繁模式挖掘的算法.此算法利用一种数据结构:投影和树,把事务投影到这棵前缀树上,它除了可以从空间上紧凑地存放频繁模式外,还建立了层的概念,挖掘时充分利用已有的计算结果,不重复计算.另外挖掘时,算法只对投影和树进行一次遍历,不需要进行耗时的I/O操作,也不需要递归地建立条件FP树而消耗大量的CPU计算资源.实验结果表明在稠密集上,其效率较高.

References

[1]  Stumme G, Taouil R, Bastide Y, et al. Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering, 2002, 42(2): 189222
[2]  Boulicaut J F, Bykowski A, Rigotti C. FreeSets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries. Data Mining and Knowledge Discovery, 2003, 7(1): 522
[3]  Pasquier N, Bastide Y, Taouil R, et al. Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems, 1999, 24(1): 2546
[4]  Pasquier N, Bastide Y, Touil R, et al. Discovering Frequent Closed Itemsets for Association Rules // Beeri C, Buneman P, eds. Proc of the 7th International Conference on Database Theory. Jerusalem, Israel, 1999: 398416
[5]  Pei Jian, Han Jiawei, Mao Runying. Closet: An Efficient Algorithm for Mining Frequent Closed Itemsets // Proc of the ACMSIGMOD International Workshop on Data Mining and Knowledge Discovery. Dallas, USA, 2000: 2130
[6]  Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation // Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000: 112
[7]  Wang Jianyong, Han Jiawei, Pei Jian. Closet+: Searching for the Best Strategies for Mining Frequent Closed Itemsets // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003: 236245
[8]  Grahne G, Zhu Jianfen. Efficiently Using PrefixTrees in Mining Frequent Itemsets // Goethals B, Zaki M J, eds. Proc of the 1st IEEE ICDM Workshop on Frequent Itemset Mining Implementations. Melbourne, USA, 2003: 135143
[9]  Zaki M J, Hsiao C J. ChARM: An Efficient Algorithm for Closed Itemset Mining // Proc of the 2nd SIAM International Conference on Data Mining. Arlington, USA, 2002: 3443

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133