全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊模型最优化规则的脱机签名鉴定研究*

, PP. 122-128

Keywords: 脱机签名鉴定,模糊模型,最优化规则,K交叉验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于多模糊规则的脱机签名模糊鉴定系统.该系统提取签名的静态特征和伪动态特征以弥补书写过程中丢失的动态信息,并采用模糊集合表征所提取特征的不确定性,同时利用隶属度函数构建新的权重系数,反映不同模糊规则对鉴定结果的重要程度.另外,为减少整个模糊鉴定系统的复杂性,提出采用K交叉验证方法对模糊规则数目的选择进行最优化.实验采用中、英文两种签名数据库分别得到9.52%和12.67%的平均错误率,验证了该系统的有效性.

References

[1]  Mizukami Y, Yoshimura M, Miike H, et al. An Offline Signature Verification System Using an Extracted Displacement Function. Pattern Recognition Letters, 2002, 23(13): 15691577
[2]  Sabourin R, Chariet M, Genjest G. An Extended ShadowCode Based Approach for Offline Signature Verification // Proc of the 2nd International Conference on Document Analysis and Recognition. Tsukuba, Japan, 1993: 15
[3]  Fang B, Leung C H, Tang Y Y, et al. Offline Signature Verification by the Tracking of Feature and Stroke Positions. Pattern Recognition, 2003, 36(1): 91101
[4]  Deng P S, Liao H Y M, Ho C W, et al. WaveletBased Offline Handwritten Signature Verification. Computer Vision and Image Understanding, 1999, 76(3): 173190
[5]  Lü Hairong, Wang Wenyuan, Wang Chong, et al. OffLine Chinese Signature Verification Based on Support Vector Machines. Pattern Recognition Letters, 2005, 26(15): 23902399
[6]  Ferrer M A, Alonso J B, Travieso C M. Offline Geometric Parameters for Automatic Signature Verification Using FixedPoint Arithmetic. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(6): 993997
[7]  Watanabe S, Furuhashi T, Obata K, et al. A Study on Feature Extraction Using a Fuzzy Net for Offline Signature Recognition // Proc of the International Joint Conference on Neural Networks. Nagoya, Japan, 1993: 28572860
[8]  Hanmandlu M, Yusof M H M, Madasu V K. Offline Signature Verification and Forgery Detection Using Fuzzy Modeling. Pattern Recognition, 2005, 38(3): 341356
[9]  Hanmandlu M, Murali Mohan K R, Chakraborty S, et al. Fuzzy Modeling Based Signature Verification System // Proc of the 6th International Conference on Document Analysis and Recognition. Seattle, USA, 2001: 110114
[10]  Babuska R, Verbruggen H B. Fuzzy Set Methods for Local Modeling and Identification // MurraySmith R, Johansen T A, eds. Multiple Model Approaches to Nonlinear Modeling and Control. London, UK: Taylor & Francis, 1997: 657662

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133