Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence Databases // Proc of the 4th International Conference on Foundations of Data Organization and Algorithms. Chicago, USA, 1993: 69-84
[2]
Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases // Proc of the 9th International Conference on Tools with Artificial Intelligence. Newport Beach, USA, 1997: 578-584
[3]
Chan K P, Fu A W. Efficient Time Series Matching by Wavelets // Proc of the 15th International Conference on Data Engineering. Sydney, Australia, 1999: 126-133
[4]
Keogh E, Chu S, Hart D, et al. An Online Algorithm for Segmenting Time Series // Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001: 289-296
[5]
Jiang Rong, Li Deyi. Similarity Search Based on Shape Representation in Time-Series Data Sets.Journal of Computer Research and Development, 2000, 37(5): 601-608 (in Chinese) (蒋 嵘,李德毅.基于形态表示的时间序列相似性搜索.计算机研究与发展, 2000, 37(5): 601-608)
[6]
Zheng Binxiang, Li Yugeng, Du Xiuhua. Research on Similarity Mining in Time Series Data Sets.Control and Decision, 2002, 17(5): 527-531 (in Chinese) (郑斌祥,席裕庚,杜秀华.利用反馈的时序模式挖掘算法研究.控制与决策, 2002, 17(5): 527-531)
[7]
Li Aiguo, Qin Zheng. Dimensionality Reduction and Similarity Search in Large Time Series Databases. Chinese Journal of Computers, 2005, 28(9): 1467-1475 (in Chinese) (李爱国,覃 征.大规模时间序列数据库降维及相似搜索.计算机学报, 2005, 28(9): 1467-1475)
[8]
Zhang Jianye, Pan Quan, Zhang Peng, et al. Similarity Measuring Method in Time Series Based on Slope.Pattern Recognition and Artificial Intelligence, 2007, 20(2): 271-274 (in Chinese) (张建业,潘 泉,张 鹏,等.基于斜率表示的时间序列相似性度量方法.模式识别与人工智能, 2007, 20(2): 271-274)
[9]
He Xingui, Liang Yongzhen. Some Theoretical Issues on Procedure Neural Networks. Engineering Science, 2000, 2(12): 40-44 (in Chinese) (何新贵,梁永祯.过程神经元网络的若干理论问题.中国工程科学, 2000, 2(12): 40-44)
[10]
Beckmann N, Kriegel H P, Schneider R, et al. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles // Proc of the ACM-SIGMOD International Conference on Management of Data. Atlantic City, USA, 1990: 322-331