Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[2]
Batur A U, Hayes M H. Linear Subspace for Illumination Robust Face Recognition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, USA, 2001, Ⅱ: 296-301
[3]
Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[4]
Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[5]
Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396
[6]
He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[7]
Geng Xin, Zhan Dechuan, Zhou Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(6): 1098-1107
[8]
Zhang Junping. Machine Learning and Its Applications. Beijing, China: Tsinghua University Press, 2006 (in Chinese) (张军平.机器学习及其应用.北京:清华大学出版社, 2006)
[9]
Schlkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319
[10]
Liu Chengjun. Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(5): 572-581
[11]
Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels // Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999: 41-48
[12]
Bengio Y, Palement J F, Vincent P. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering // Thrun S, Saul L, Schlkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004: 307-311
[13]
Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230-244
[14]
Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[15]
Jin Bo, Tang Y C, Zhang Yanqing. Support Vector Machines with Genetic Fuzzy Feature Transformation for Biomedical Data Classification. Information Sciences, 2007, 177(2): 476-489
[16]
Müller K R, Mika S, Rtsch G, et al. An Introduction to Kernel-Based Learning Algorithms. IEEE Trans on Neural Networks, 2001, 12(2): 181-201
[17]
Schlkopf B, Burges C, Smola A J. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999
[18]
Ruiz A, López-de-Teruel P E. Nonlinear Kernel-Based Statistical Pattern Analysis. IEEE Trans on Neural Networks, 2001, 12(1): 16-32
[19]
Samaria F, Harter A C. Parameterisation of a Stochastic Model for Human Face Identification // Proc of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA, 1994: 138-142