全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于核的监督流形学习算法

, PP. 388-393

Keywords: 流形学习,局部保持映射(LPP),核学习,监督学习,特征提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对流形学习算法——局部保持映射存在的参数选择及不能进行非线性特征提取的问题,提出一种基于核的监督流形学习算法.该算法作为局部保持映射算法的改进算法用样本类标识信息指导建立局部最近邻图,并在建立局部最近邻图使用无参数的相似度量.利用核方法来解决局部保持映射算法在处理线性不可分问题上的局限性问题.在两个常用数据库上验证本文算法的可行性和有效性.

References

[1]  Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[2]  Batur A U, Hayes M H. Linear Subspace for Illumination Robust Face Recognition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, USA, 2001, Ⅱ: 296-301
[3]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 2323-2326
[4]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[5]  Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396
[6]  He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[7]  Geng Xin, Zhan Dechuan, Zhou Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(6): 1098-1107
[8]  Zhang Junping. Machine Learning and Its Applications. Beijing, China: Tsinghua University Press, 2006 (in Chinese) (张军平.机器学习及其应用.北京:清华大学出版社, 2006)
[9]  Schlkopf B, Smola A, Müller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319
[10]  Liu Chengjun. Gabor-Based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(5): 572-581
[11]  Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels // Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999: 41-48
[12]  Bengio Y, Palement J F, Vincent P. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering // Thrun S, Saul L, Schlkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004: 307-311
[13]  Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230-244
[14]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[15]  Jin Bo, Tang Y C, Zhang Yanqing. Support Vector Machines with Genetic Fuzzy Feature Transformation for Biomedical Data Classification. Information Sciences, 2007, 177(2): 476-489
[16]  Müller K R, Mika S, Rtsch G, et al. An Introduction to Kernel-Based Learning Algorithms. IEEE Trans on Neural Networks, 2001, 12(2): 181-201
[17]  Schlkopf B, Burges C, Smola A J. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA: MIT Press, 1999
[18]  Ruiz A, López-de-Teruel P E. Nonlinear Kernel-Based Statistical Pattern Analysis. IEEE Trans on Neural Networks, 2001, 12(1): 16-32
[19]  Samaria F, Harter A C. Parameterisation of a Stochastic Model for Human Face Identification // Proc of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, USA, 1994: 138-142

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133