全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于距离尺度学习的新类识别方法*

, PP. 47-52

Keywords: 新类识别,距离尺度学习,自适应分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在缺少先验知识的前提下自动识别新类,并较好地解决了样本间类别相似性同样本间距离不一致的问题,为分类器的自适应更新提供了关键技术.在多个数据集上的实验结果表明在客观新类出现后该方法能有效发现新类,可使更新后的分类器保持较高准确度,为实现适应新类的在线分类系统奠定坚实基础.

References

[1]  Cuevas A, Febrero M, Fraiman R. Cluster Analysis: A Further Approach Based on Density Estimation. Computational Statistics and Data Analysis, 2001, 36(4): 441-459
[2]  Chang I, Loew M. Pattern Recognition with New Class Discovery // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Maui, USA, 1991: 438-443
[3]  Chow C. Parzen-Window Network Intrusion Detectors // Proc of the 16th International Conference on Pattern Recognition. Québec, Canada, 2002: 385-388
[4]  Lauer M. A Mixture Approach to Novelty Detection Using Training Data with Outliers // Proc of the 12th European Conference on Machine Learning. Freiburg, Germany, 2001: 300-311
[5]  Liu Yan, Gururajan S, Cukic B, et al. Validating an Online Adaptive System Using SVDD // Proc of the 15th International Conference on Tools with Artificial Intelligence. Sacramento, USA, 2003: 384-388
[6]  Tax D M J, Duin R P W. Support Vector Data Description. Machine Learning, 2004, 54(1): 45-66
[7]  Ougiaroglou S, Nanopoulos A, Papadopoulos A N, et al. Adaptive k-Nearest-Neighbor Classification Using a Dynamic Number of Nearest Neighbors // Proc of the 11th East-European Conference on Advances in Databases and Information Systems. Varna, Bulgaria, 2007: 66-82
[8]  Krishnapuram B. Adaptive Classifier Design Using Labeled and Unlabeled Data. Ph.D Dissertation. Durham, USA: Duke University. Department of ECE, 2004
[9]  Zhou Dengyong, Bousquet O, Lal T N, et al. Learning with Local and Global Consistency // Thrun S, Saul L K, Scholkpf B, eds. Advances in Neural Information Processing System. Cambridge, USA: MIT Press, 2004, 16: 321-328
[10]  Xie Maoqiang, Huang Yalou. Adaptive Algorithm for Class Incremental Induction of Decision Tree. Computer Engineering, 2006, 32(17): 41-43 (in Chinese) (谢茂强,黄亚楼.适应类别增量的决策树训练算法.计算机工程, 2006, 32(17): 41-43)
[11]  Song Rui, Zhang Jing, Xia Shengpin, et al. An Adaptive Classification Method of BP-NN Group Based Classification System and Its Application. Acta Electronica Sinica, 2001, 29(12): 1950-1953 (in Chinese) (宋 锐,张 静,夏胜平,等.一种基于BP 神经网络群的自适应分类方法及其应用.电子学报, 2001, 29(12): 1950-1953)
[12]  Xing E P, Ng A Y, Jordan M I, et al. Distance Metric Learning, with Application to Clustering with Side-Information // Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing System. Cambridge, USA: MIT Press, 2003, 15: 505-512

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133