Wang Liang, Hu Weiming, Tan Tieniu. Recent Developments in Human Motion Analysis. Pattern Recognition, 2003, 36(3): 585-601
[2]
Johansson G. Visual Motion Perception. Scientific American, 1975, 232(6): 76-88
[3]
Du Youtian, Chen Feng, Xu Wenli, et al. A Survey on the Vision-Based Human Motion Recognition. Acta Electronica Sinica, 2007, 35(1), 84-90 (in Chinese) (杜友田,陈 峰,徐文立,等.基于视觉的人的运动识别综述.电子学报, 2007, 35(1): 84-90)
[4]
Yilmaz A, Javed O, Shah M. Object Tracking: A Survey. ACM Computing Surveys, 2006, 38(4): 13-57
[5]
Stauffer C, Grimson W E L. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757
[6]
Pavlidis T, Morellas V, Tsiam P, et al. Urban Surveillance Systems: From the Laboratory to the Commercial World. Proc of the IEEE, 2001, 89(10): 1478-1497
[7]
Elgammal A M, Harwood D, Davis L. Non-Parametric Model for Background Subtraction // Proc of the 6th European Conference on Computer Vision. Dublin, Germany, 2000: 751-767
[8]
Mittal A, Paragios N. Motion-Based Background Subtraction Using Adaptive Kernel Density Estimation // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004: 302-309
[9]
Tuzel O, Porikli F, Meer P. A Bayesian Approach to Background Modeling // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 58-65
[10]
Sun Jian, Zhang Weiwei, Tang Xiaoou, et al. Background Cut // Proc of the European Conference on Computer Vision. Graz, Austria, 2006: 628-641
[11]
Lin H H, Liu T L, Chuang J H. A Probabilistic SVM Approach for Background Scene Initialization // Proc of the IEEE International Conference on Image Processing. New York, USA, 2002, Ⅲ: 893-896
[12]
Lee D S. Effective Gaussian Mixture Learning for Video Background Subtraction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
[13]
Yu Ting, Zhang Cha, Cohen M, et al. Monocular Video Foreground/Background Segmentation by Tracking Spatial-Color Gaussian Mixture Models // Proc of the IEEE Workshop on Motion and Vision Computing. Austin, USA, 2007: 5-12
[14]
Cheung C S, Kamath C. Robust Techniques for Background Subtraction in Urban Traffic Video. Proc of the SPIE, 2004, 5308: 881-892
[15]
Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International Journal on Computer Vision, 1988, 1(4): 321-331
[16]
Xu Chenyang, Prince J L. Snakes, Shapes and Gradient Vector Flow. IEEE Trans on Image Processing, 1998, 7(3): 359-369
[17]
Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266-280
[18]
Mansouri A R, Konrad J. Multiple Motion Segmentation with Level Sets. IEEE Trans on Image Processing, 2003, 12(2): 201-220
[19]
Appleton B, Talbot H. Globally Minimal Surfaces by Continuous Maximal Flows. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 106-118
[20]
Boykov Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in n-d Images // Proc of the 8th International Conference on Computer Vision. Vancouver, Canada, 2001, Ⅰ: 105-112
[21]
Criminisi A, Cross G, Blake A, et al. Bilayer Segmentation of Live Video // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 53-60
[22]
Kim M, Choi J G, Kim D. A VOP Generation Tool: Automatic Segmentation of Moving Objects in Image Sequences Based on Spatio-Temporal Information. IEEE Trans on Circuits and Systems for Video Technology, 1998, 9(8): 1216-1226
[23]
Huang Shike, Tao Lin, Zhang Tianxu. An Improved Algorithm of Moving Object Detection Based on Optical Flow. Journal of Huazhong University of Science and Technology: Nature Science, 2005, 33(5): 39-41 (in Chinese) (黄士科,陶 琳,张天序.一种改进的基于光流的运动目标检测方法.华中科技大学学报:自然科学版, 2005, 33(5): 39-41)
[24]
Daniel G P, Chuang G, Sun M T. Semantic Video Object Extraction Using Four-Band Water Shed and Partition Lattice Operators. IEEE Trans on Circuits and Systems for Video Technology, 2001, 11(5): 603-618
[25]
Shi Li, Zhang Zhaoyang. Extraction of Video Object Plane Using Modified Hausdorff Object Tracker. Journal of Image and Graphics, 2001, 6(7): 805-810 (in Chinese) (史 力,张兆扬.使用修改的豪氏道夫距离自动提取运动对象.中国图象图形学报, 2001, 6(7): 805-810)
[26]
Kim J S, Chen T. Multiple Feature Clustering for Image Sequence Segmentation. Pattern Recognition Letters, 2001, 22(11): 1207-1217
[27]
Collins R T. Mean Shift Blob Tracking through Scale Space // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, Ⅱ: 234-240
[28]
Kuno Y, Watanabe T, Shimosakoda Y, et al. Automated Detection of Human for Visual Surveillance System // Proc of the IEEE International Conference on Pattern Recognition. Vienna, Austria, 1996: 865-869
[29]
Zhou Jianpeng, Hoang J. Real Time Robust Human Detection and Tracking System // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 149-156
[30]
Ishii Y, Hongo H, Yamamoto K, et al. Face and Head Detection for a Real-Time Surveillance System // Proc of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004, Ⅲ: 298-301
[31]
Dalal N, Triggs B. Histogram of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅰ: 886-893
[32]
Cutler R, Davis L. Robust Real-Time Periodic Motion Detection, Analysis, and Application. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 781-796
[33]
Ran Yang, Weiss I, Zheng Qinfen, et al. An Efficient and Robust Human Classification Algorithm Using Finite Frequencies Probing // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅷ: 132-137
[34]
Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-Time Tracking of Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
[35]
Li Xin, Shahon M, Yilmaz A. Contour-Based Object Tracking with Occlusion Handling in Video Acquired Using Mobile Cameras. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1531-1536
[36]
Mittal A, Davis L S. M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision, 2003, 51(3): 189-203
[37]
Zhao Tao, Nevaita R. 3D Tracking Human Locomotion: A Tracking as Recognition Approach // Proc of the 16th International Conference on Pattern Recognition. Québec, Canada, 2002, Ⅰ: 546-551
[38]
Karaulova I, Hall P, Marshall A. A Hierarchical Model of Dynamics for Tracking People with a Single Video Camera // Proc of the 11th British Machine Vision Conference. Bristol, UK, 2000: 352-361
[39]
Rehg J, Morris D D, Kanade T. Ambiguities in Visual Tracking of Articulated Objects Using Two and Three Dimension Models. International Journal of Robotics Research, 2003, 22(6): 393-418
[40]
Wu Ying, Hua Gang, Yu Ting. Tracking Articulated Body by Dynamic Markov Network // Proc of the International Conference on Computer Vision. Nice, France, 2003, Ⅱ: 1094-1101
[41]
Remondino F, Roditakis A. 3D Reconstruction of Human Skeleton from Single Images or Monocular Video Sequences // Proc of the 25th DAGM Symposium on Pattern Recognition. Magdeburg, Germany, 2003: 100-107
[42]
Remondino F, Roditakis A. Human Figures Reconstruction and Modeling from Single Images or Monocular Video Sequences // Proc of the 4th IEEE International Conference on 3D Digital Imaging and Modeling. Banff, USA, 2003: 116-123
[43]
Deutscher J, Blake A, Reid L. Articulated Body Motion Capture by Annealed Particle Filtering // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head, USA, 2000, Ⅱ: 126-133
[44]
Gavrila D M, Davis L S. 3D Model-Based Tracking of Human in Action: A Multi-View Approach // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 1996: 73-80
[45]
Sminchisescu C. Estimation Algorithms for Ambiguous Visual Models: Three Dimensional Human Modeling and Motion Reconstruction in Monocular Video Sequences. Ph.D Dissertation. Grenoble, France: Institute National Polytechnique de Grenoble, 2002
[46]
Theobalt C, Carranza J, Magnor M A, et al. Enhancing Silhouette-Based Human Motion Capture with 3D Motion Fields // Proc of the 11th Pacific Conference on Computer Graphics and Applications. Canmore, Canada, 2003: 185-193
[47]
Bregler C, Malik J, Pullen K. Twist Based Acquisition and Tracking of Animal and Human Kinematics. International Journal of Computer Vision, 2004, 56(3): 179-194
[48]
Bary M, Koller-Meier E, Schraudolph N N, et al. Stochastic Meta-Descent for Tracking Articulated Structures // Proc of the Workshop on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅰ: 7-15
[49]
Isard M, Blake A. Condensation: Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision, 1998, 9(1): 5-28
[50]
Isard M, Blake A. ICondensation: Unifying Low-Level and High-Level Tracking in a Stochastic Framework // Proc of the 5th European Conference on Computer Vision. Freiburg, Germany, 1998, Ⅰ: 893-898
[51]
Isard M, Blake A. A Mixed-State Condensation Tracker with Automatic Model-Switching // Proc of the 6th International Conference on Computer Vision. Bombay, Indian, 1998: 107-112
[52]
Pitt M K, Shephard N. Filtering via Simulation: Auxiliary Particle Filtering. Journal of the American Statistical Association, 1999, 94(446): 590-599
[53]
Maskell S, Gordon N, Rollason M, et al. Efficient Multi-Target Tracking Using Particle Filters. Journal of Image and Vision Computing, 2002, 21(10): 931-939
[54]
Sminchisescu C, Trigs B. Covariance-Scaled Sampling for Monocular 3D Body Tracking // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2001, Ⅰ: 447-454
[55]
Collins R T, Lipton A J, Kanade T, et al. A System for Video Surveillance and Monitoring: VSAM Report. Technical Report, CMU-RI-TR-00-12, Pittsburg, USA: Carnegie Mellon University. Robotics Institute, 2000
[56]
Migliore D A, Matteucci M, Naccari M. A Revaluation of Frame Difference in Fast and Robust Motion Detection // Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks. Santa Barbara, USA, 2006: 215-218
[57]
Barron J L, Fleet D J, Beauchemin S S, et al. Performance of Optical Flow Techniques. International Journal of Computer Vision, 1994, 12(1): 42-77
[58]
Adiv G. Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 1985, 7(4): 384-401
[59]
Nummiaro K, Koller-Meier E B, Gool L V. Color Feature for Tracking Non-Rigid Objects [EB/OL]. [2003-08-02]. http://www.koller-meier.ch/esther/nummiaroACTA03.pdf
[60]
Khan Z, Balch T, Dellaert F. Efficient Particle Filter-Based Tracking of Multiple Interacting Targets Using an MRF-Based Motion Model // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Atlanta, USA, 2003, Ⅰ: 254-259
[61]
Bobick A F, Davis J W. The Recognition of Human Movement Using Temporal Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267
[62]
Bobick A F, Wilson A D. A State-Based Approach to the Representation and Recognition of Gesture. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(12): 1325-1337
[63]
Rahman M M, Ishikawa S. Human Motion Recognition Using an Eigenspace. Pattern Recognition Letters, 2005, 26(6): 687-697
[64]
Sminchisescu C, Kanaujia A, Li Z G, et al. Conditional Models for Contextual Human Motion Recognition // Proc of the International Conference on Computer Vision. Beijing, China, 2005, Ⅱ: 1808-1815
[65]
Yamato J, Ohya J, Ishii K. Recognizing Human Action in Time-Sequential Images Using Hidden Markov Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Champaign, USA, 1992: 379-385
[66]
Chen H S, Chen H T, Chen Yiwen, et al. Human Action Recognition Using Star Skeleton // Proc of the 4th ACM International Workshop on Video Surveillance & Sensor Networks. Santa Barbara, USA, 2006: 171-178
[67]
Brand M, Oliver N, Pentland A. A Coupled Hidden Markov Models for Complex Action Recognition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997: 994-999
[68]
Oliver N M, Rosario B, Pentland A P. A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843
[69]
Bui H H, Phung D Q, Venkatesh S. Hierarchical Hidden Markov Models with General State Hierarchy // Proc of the 19th National Conference on Artificial Intelligence. San Jose, USA, 2004: 324-329
[70]
Nguyen N T, Phung D Q, Venkatesh S, et al. Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 955-960
[71]
Luo Ying, Wu T D, Hwang J N. Object-Based Analysis and Interpretation of Human Motion in Sports Video Sequence by Dynamic Bayesian Networks. Computer Vision and Image Understanding, 2003, 92(2): 196-216
[72]
Gong Shaogang, Tao Xiang. Recognition of Group Activities Using Dynamic Probabilistic Networks // Proc of the International Conference on Computer Vision. Washington, USA, 2003, Ⅱ: 742-749
[73]
Ren Haibing, Xu Guangyou, Kee S. Subject-Independent Natural Action Recognition // Proc of the International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004: 523-528
[74]
Cho K, Cho H, Um K. Human Action Recognition by Inference of Stochastic Regular Grammars // Proc of the Joint IAPR International Workshops on Syntactical and Structural Pattern Recognition and Statistical Pattern Recognition. Lisbon, Portugal, 2004: 388-396
[75]
Hu Weiming, Xie D, Tan Tieniu. Learning Activity Pattern Using Fuzzy Self-Organizing Neural Network. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(3): 1618-1626
[76]
Hongeng S, Nevatia R, Bremond F. Video-Based Event Recognition: Activity Representation and Probabilistic Recognition Methods. Computer Vision and Image Understanding, 2004, 96(2): 129-162
[77]
Kojima A, Izumi M, Tamura T, et al. Generating Natural Language Description of Human Behavior from Video Images // Proc of the International Conference on Pattern Recognition. Barcelona, Spain, 2000, Ⅳ: 728-731
[78]
Kojima A, Tamura T, Fukunaga K. Textual Description of Human Activities by Tracking Head and Hand Motions // Proc of the International Conference on Pattern Recognition. Québec, Canada, 2002, Ⅱ: 1073-1077
[79]
Nevatia R, Zhao Tao, Hongeng S. Hierarchical Language Based Representation of Events in Video Streams // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, Ⅳ: 39-46
[80]
Cho M, Song D, Kim P. Human Activity Description Using Motion Verbs in WordNet // Proc of the 8th International Conference on Advanced Communication Technology. Phoenix Park, USA, 2006: 446-449
[81]
Green R D, Guan Ling. Quantifying and Recognizing Human Movement Patterns from Monocular Video Images — Part I: A New Framework for Modeling Human Motion. IEEE Trans on Circuits and Systems for Video Technology, 2004, 14(2): 179-190
[82]
Yu S X, Shi Jiaobo. Segmentation Given Partial Grouping Constraints. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183
[83]
Levin A, Vlola P, Freund Y. Unsupervised Improvement of Visual Detectors Using Co-Training // Proc of the International Conference on Computer Vision. Nice, France, 2003, Ⅰ: 626-633
[84]
Curio C, Giese M A. Combining View-Based and Model-Based Tracking of Articulated Human Movements // Proc of the IEEE Workshop on Motion and Vision Computing. Breckenridge, USA, 2005: 261-268