全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

均值-标准差描述子与直线匹配*

, PP. 32-39

Keywords: 直线匹配,直线描述子,均值-标准差描述子

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种通过直线描述子来进行自动直线匹配的思想.直线描述子的建立分为以下3个主要步骤:首先为直线定义平行邻域并将该邻域分解为一系列平行线,其次通过选择图像特征建立直线描述矩阵,最后通过计算描述矩阵列向量的均值和标准差获得直线描述子.基于不同的图像特征(灰度、梯度和梯度幅值),提出3个具有平移、旋转和线性光照不变性的直线描述子.实验结果表明本文提出的直线描述子具有较好的匹配性能.

References

[1]  Tang A W K, Ng T P, Hung Y S, et al. Projective Reconstruction from Line-Correspondences in Multiple Uncalibrated Images. Pattern Recognition, 2006, 39(5): 889-896
[2]  Aider O A, Hoppenot P, Colle E. A Model-Based Method for Indoor Mobile Robot Localization Using Monocular Vision and Straight-Line Correspondences. Robotics and Autonomous Systems, 2005, 52(2/3): 229-246
[3]  Shi Fanhuai, Wang Jianhua, Zhang Jing, et al. Motion Segmentation of Multiple Translation Objects from Line Correspondences. Pattern Recognition, 2005, 38(10): 1775-1778
[4]  Bartoli A, Sturm P. Multiple-View Structure and Motion from Line Correspondences // Proc of the IEEE International Conference on Computer Vision. Madison, USA, 2003: 207-212
[5]  Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522
[6]  Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[7]  Ke Yan, Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 506-513
[8]  Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630
[9]  Mikolajczyk K, Zisserman A, Schmid C. Shape Recognition with Edge-Based Features // Proc of the British Machine Vision Conference. Norwich, UK, 2003, Ⅱ: 779-788
[10]  Matas J, Chum O, Urban M, et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions // Proc of the British Machine Vision Conference. Cardiff, UK, 2002, Ⅰ: 384-396
[11]  Hartley R. A Linear Method for Reconstruction from Lines and Points // Proc of the 5th IEEE International Conference on Computer Vision. Cambridge, USA, 1995: 882-887
[12]  Lourakis M I A, Halkidis S T, Orphanoudakis S C. Matching Disparate Views of Planar Surfaces Using Projective Invariants. Image and Vision Computing, 2000, 18(9): 673-683
[13]  Schmid C, Zisserman A. Automatic Line Matching across Views // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. San Juan, USA, 1997: 666-671
[14]  Schmid C, Zisserman A. The Geometry and Matching of Lines and Curves over Multiple Views. International Journal of Computer Vision, 2000, 40(3): 199-233
[15]  Herbert B, Vittorio F, Luc V G. Wide-Baseline Stereo Matching with Line Segments // Proc of the 14th International Conference on Pattern Recognition. San Diego, USA, 2005, Ⅰ: 329-336
[16]  Deng Y, Lin Xueyin. A Fast Line Segment Based Dense Stereo Algorithm Using Tree Dynamic Programming // Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006: 201-212
[17]  Goedem T, Tuytelaars T, Gool L V. Fast Wide Baseline Matching with Constrained Camera Position // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004: 24-29
[18]  Egnal G, Wildes R P. Detecting Binocular Half-Occlusions: Empirical Comparisons of Four Approaches // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000: 466-473

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133