全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于PBIL算法和变焦算法的混合算法*

, PP. 1-7

Keywords: 基于群体的增量学习(PBIL)算法,变焦算法,混合算法,函数优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于群体的增量学习(PBIL)算法具有运行过程简单、解决问题快速准确的优点.本文采用二进制编码,针对二进制编码的算法从二进制最高位到最低位依次收敛的多米诺现象,提出一种变焦算法用来提高PBIL算法的搜索效率和求解精度.基于多组不同维数的Benchmark函数的仿真结果表明,混合算法具有全局收敛、求解精度及搜索效率高的优点.

References

[1]  Balujia S. Population-Based Incremental Learning: A Method for Integrating Genetic Algorithm Search Based Function Optimization and Competitive Learning. Technical Report, CMU-CS-94-163, Pittsburgh, USA: Carnegie Mellon University. Computer Science Department,1994
[2]  Rastegar R, Hariri A, Mazoochi M. A Convergence Proof for the Population Based Incremental Learning Algorithm // Proc of the 17th IEEE International Conference on Tools with Artificial Intelligence. Hongkong, China, 2005: 387-391
[3]  Zhang Qingbin, Wu Tihua, Liu Bo. A Population-Based Incremental Learning Algorithm with Elitist Strategy // Proc of the 3rd International Conference on Natural Computation. Haikou, China, 2007, Ⅱ: 583-587
[4]  Zhou Shude, Sun Zengqi. PBIL Ensemble: Many Better Than One // Proc of the ICSC Congress on Computational Intelligence Methods and Applications. Istanbul, Turkey, 2005: 254-259
[5]  Ghebreab S, Jaffe C C, Smeulders A W M. Population Based Incremental Interactive Concept Learning for Image Retrieval by Stochastic String Segmentations. IEEE Trans on Medical Imaging, 2004, 23(6): 676-689
[6]  Gallagher M, Frean M. Population-Based Continuous Optimization Probabilistic Modeling and Mean Shift. Evolutionary Computation, 2005, 13(1): 29-42
[7]  Yang S Y, Ho S L, Ni G Z, et al. A New Implementation of Population Based Incremental Learning Method for Optimizations in Electromagnetic. IEEE Trans on Magnetics, 2007, 43(4): 1601-1604
[8]  Rudnick W M. Genetic Algorithms and Fitness Variance with an Application to Automated Design of Artificial Neural Networks. Ph.D Dissertation. Beaverton, USA: Oregon Graduate Institute of Science and Technology. Klamath Falls, 1992
[9]  Kown Y D, Kown H W, Cho S W, et al. Convergence Rate of the Successive Zooming Genetic Algorithm Using Optimal Control Parameters. WSEAS Trans on Computers, 2006, 5(6):1200-1207
[10]  Liu Shousheng, Yu Shenglin, Ding Yong, et al. Zooming Genetic Algorithm. Control and Decision, 2002, 17(Z1): 731-734 (in Chinese) (刘守生,于盛林,丁 勇,等.一种变焦遗传算法.控制与决策, 2002, 17(Z1): 731-734)
[11]  Liu Fucai, Pan Jianghua, Lou Liping, et al. An Improved Zooming Genetic Algorithm. Information and Control, 2004, 33(1): 82-84 (in Chinese) (刘福才,潘江华,路立平,等.一种改进的变焦遗传算法.信息与控制, 2004, 33(1): 82-84)
[12]  Wang Ling. Intelligent Optimization Algorithms with Applications. Beijing, China: Tsinghua University Press, 2004 (in Chinese) (王 凌.智能优化算法及其应用.北京:清华大学出版社, 2004)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133