全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于拉丁超立方体抽样的多目标进化算法*

, PP. 223-232

Keywords: 多目标进化算法(MOEA),拉丁超立方体抽样(LHS),复杂Pareto解集,进化模型,局部搜索,进化操作

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统多目标进化算法(MOEA)在解决具有复杂Pareto解集的多目标优化问题(CPS_MOP)时存在严重的退化现象.为此,本文提出两种进化模型——基于个体的进化模型和基于种群的进化模型.并在此基础上,设计两类基于拉丁超立方体抽样(LHS)的MOEA(LHS-MOEA).LHS-MOEA采用LHS局部搜索开采目前较优秀的区域,采用进化操作在可行解空间中探测新的搜索区域,从而有效克服退化现象.实验结果表明,LHS-MOEA求解CPS_MOPs的效果较好,比经典算法NSGA-II具有明显的优势.

References

[1]  Corne D W, Jerram N R, Knowles J D, et al. PESA-II: Region-Based Selection in Evolutionary Multiobjective Optimization // Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001: 283-290
[2]  Cui Xunxue. Multiobjective Evolutionary Algorithms and Their Applications. Beijing, China: National Defense Industry Press, 2006 (in Chinese) (崔逊学.多目标进化算法及其应用.北京:国防工业出版社, 2006)
[3]  Zheng Jinhua. Multiobjective Evolutionary Algorithms and Applications. Beijing, China: Science Press, 2007 (in Chinese) (郑金华.多目标进化算法及其应用.北京:科学出版社, 2007)
[4]  Zhang Qingfu, Zhou Aimin, Jin Yaochu. RM-MEDA: A Regularity Model Based Multiobjective Estimation of Distribution Algorithm. IEEE Trans on Evolutionary Computation, 2008, 12(1): 41-63
[5]  Edgeworth F Y. Mathematical Psychics. London, UK: Kegan Paul & Co., 1881
[6]  Pareto V. Cours D'Economie Politique. Lausanne, Switzerland: Rouge Press, 1896
[7]  Deb K. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Evolutionary Computation, 1999, 7(3): 205-230
[8]  Deb K. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems. Technical Report, CI-49/98, Dortmund: Germany: University of Dortmund. Department of Computer Science/LS11, 1999
[9]  Deb K, Sinha A, Kukkonen S. Multi-Objective Test Problems, Linkages, and Evolutionary Methodologies // Proc of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA, 2006, Ⅱ: 1141-1148
[10]  Li Hui, Zhang Qingfu. A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages // Proc of the International Conference on Parallel Problem Solving from Nature. Reykjavik, Iceland, 2006: 583-592
[11]  Mckay M D, Beckman R J, Conover W J. A Comparison of Three Methods for the Selecting Values of Input Variables in the Analysis of Out Put from a Computer Code. Technometrics, 1979, 21(2): 239-245
[12]  Deb K, Agrawal R B. Simulated Binary Crossover for Continuous Search Space. Complex Systems, 1995, 9(6): 115-148
[13]  Deb K, Beyer H. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation, 2001, 9(2): 197-221
[14]  Deb K, Goyal M. A Combined Genetic Adaptive Search (GeneAS) for Engineering Design. Computer Science and Informatics, 1996, 26(4): 30-45
[15]  Wolpert D H, Macready W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation, 1997, 1(1): 67-82
[16]  Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms // Proc of the 1st International Conference on Genetic Algorithm. Hillsdale, USA, 1985: 93-100
[17]  Coello C C A. Evolutionary Multiobjective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28-36
[18]  Coello C C A. 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to Be Done // Yen G Y, Fogel D B, eds. Computational Intelligence: Principles and Practice, Chapter 4. New York, USA: IEEE Computational Intelligence Society, 2006: 73-88
[19]  Fonseca C M, Fleming J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization // Proc of the 5th International Conference on Genetic Algorithms. San Mateo, USA, 1993: 416-423
[20]  Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation. 1994, 2(3): 221-248
[21]  Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization // Proc of the 1st IEEE World Congress on Evolutionary Computational Intelligence. Piscataway, USA, 1994: 82-87
[22]  Zitzler E, Thiele L. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Study // Proc of the 5th International Conference on Parallel Problem Solving from Nature. Amsterdam, Netherlands, 1998: 292-304
[23]  Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271
[24]  Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, 103, Zurich, Switzerland: ETH Zurich. Computer Engineering and Networks Laboratory (TIK), 2001
[25]  Knowles J, Corne D. Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Trans on Evolutionary Computation, 2003, 7(2): 100-116
[26]  Deb K, Goldberg D E. An Investigation of Niche and Species Formation in Genetic Function Optimization // Proc of the 3rd International Conference on Genetic Algorithms. San Mateo, USA, 1989: 42-50
[27]  Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197
[28]  Corne D, Knowles J D, Oates M J. The Pareto Envelope-Based Selection Algorithm for Multiobjecitve Optimization // Proc of the 6th International Conference on Parallel Problem Solving from Nature. Paris, France, 2000: 839-848

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133