全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有局部结构保留性质的PCA改进算法

, PP. 388-392

Keywords: 维数约减,主成分分析(PCA),保局投影(LPP),流形学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

保局投影(LPP)是一种局部结构保留算法,它使得每个数据点和它的近邻点在投影空间中尽可能地保持相近.结合LPP的几何思想,本文提出一种具有局部结构保留特性的PCA改进算法——保局PCA(LP-PCA).该算法通过构造数据集的邻接图及其补图,对近邻点和非近邻点采取不同的处理方式.在获得数据集全局结构的同时,可有效保留数据集的局部结构.在模拟数据集和现实数据集上进行实验,实验结果验证该算法的有效性.

References

[1]  Jolliffe I. Principal Component Analysis. New York, USA: Springer-Verlag, 1989
[2]  Luo Siwei, Zhao Lianwei. Manifold Learning Algorithms Based on Spectral Graph Theory. Journal of Computer Research and Development, 2006, 43(7): 1173-1179 (in Chinese) (罗四维,赵连伟.基于谱图理论的流形学习算法.计算机研究与发展, 2006, 43(7): 1173-1179)
[3]  Zhang Junping. Research on Some Problems in Manifold Learning // Wang Jue, Zhou Zhihua, Zhou Aoying, eds. Machine Learning and Applications. Beijing, China: Tsinghua University Press, 2006: 135-169 (in Chinese) (张军平. 流形学习若干问题研究 // 王 珏,周志华,周傲英,编.机器学习及其应用.北京:清华大学出版社, 2006: 135-169)
[4]  He Xiaofei, Niyogi P. Locality Preserving Projections // Thrun S, Saul L K, Schlkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003, 16: 56-87
[5]  He Xiaofei. Locality Preserving Projections. Ph.D Dissertation. Illinois, USA: The University of Chicago. Department of Computer Science, 2005
[6]  Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6): 1373-1396
[7]  Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing, China: Tsinghua University Press, 2000 (in Chinese) (边肇祺,张学工.模式识别.北京:清华大学出版社, 2000)
[8]  Nene S A, Nayar S K, Murase H. Columbia Object Image Library (COIL20). Technical Report, CUCS-005-96. New York, USA: Columbia University. Department of Computer Science, 1996
[9]  Asuncion A, Newman D J. UCI Machine Learning Repository [DB/OL]. [2007-04-13]. http://archive.ics.vci.edu
[10]  Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley & Sons, 2001
[11]  Weinberger K Q, Saul L K. Unsupervised Learning of Image Manifolds by Semidefinite Programming. International Journal of Computer Vision, 2006, 70(1): 77-90

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133