全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于抽象隐马尔可夫模型的运动行为识别方法*

, PP. 433-439

Keywords: 隐马尔可夫模型,运动估计,期望最大化(EM)算法,近似推理,运动行为识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

对人行为的感知和分析是家庭监护服务机器人系统中的关键环节.本文在概率框架下提出一种基于抽象隐马尔可夫模型的人运动行为识别方法.室内环境中人的运动具有层次化特性且各层次具有抽象马尔可夫决策过程的性质,因此采用具有级联形式的抽象隐马尔可夫模型建模人的运动.使用期望最大化算法分别学习抽象隐马尔可夫模型的观测模型和状态转移模型,采用具有较高计算效率的Rao-blackwellised粒子滤波近似推理方法识别人运动的时空序列.实验数据采用视觉跟踪与定位系统获得的人体运动轨迹,运用该法训练并识别多种室内运动模式,结果证明本文方法的有效性.

References

[1]  Bennewitz M. Mobile Robot Navigation in Dynamic Environments. Ph.D Dissertation. Freiburg. Germany: University of Freiburg. Department of Computing, 2004
[2]  Nguyen N T. Recognising Human Behaviours in Complex Environments. Ph.D Dissertation. Curtin, Australia: Curtin University of Technology. Department of Computing, 2003
[3]  Bennewitz M, Burgard W, Thrun S. Using EM to Learn Motion Behaviors of Persons with Mobile Robots // Proc of the IEEE International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002, Ⅰ: 502-507
[4]  Hu Weiming, Xiao Xuejuan, Fu Zhouyu, et al. A System for Learning Statistical Motion Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1450-1464
[5]  Bui H H, Venkatesh S, West G. Policy Recognition in the Abstract Hidden Markov Model. Journal of Artificial Intelligence Research, 2002, 17: 451-499
[6]  Osentoski S, Manfredi V, Mahadevan S. Learning Hierarchical Models of Activity // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan, 2004, Ⅰ: 891- 896
[7]  Nguyen N T, Phung D Q, Venkatesh S, et al. Learning and Detecting Activities from Movement Trajectories Using the HHMM // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 955- 960
[8]  Murphy K P. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D Dissertation. Berkeley, USA: University of California. Computer Science Division, 2002
[9]  Liao L, Patterson J, Fox D, et al. Learning and Inferring Transportation Routines. Artificial Intelligence, 2007, 171(5/6): 311-331
[10]  Lauritzen S L, Spiegelhalter D J. Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems. Journal of the Royal Statistical Society, 1988, 50(2): 157-224
[11]  Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc of IEEE, 1989, 77(2): 257-286
[12]  Doucet A, de Freitas A, Murphy K, et al. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks // Proc of the 16th International Conference on Uncertainty in Artificial Intelligence. Stanford, USA, 2000: 176-183

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133