全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于图像底层特征的隐马尔可夫人体检测方法*

, PP. 743-749

Keywords: 人体检测,特征匹配,隐马尔可夫模型(HMM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种单幅图像中的人体检测方法.该方法用隐马尔可夫模型表示人体,根据给定的人体结构序列估计产生该序列的图像区域,从而将人体检测问题转化为隐马尔可夫解码问题求解.首先对图像进行Mean-Shift分割,并根据颜色信息搜索出属于躯干的区域,然后将明暗度、颜色及边缘3种底层特征相结合,估计特征匹配概率并由此获得四肢部分的候选区域.最后估计候选区域的连接概率并利用隐马尔可夫解码算法找出最优的人体配置区域.实验结果表明,该方法对于复杂背景中具有不同姿态的人体图像可得到较满意的检测结果.和其它检测方法相比,该方法并非单纯地给出矩形近似的人体各个部分,同时还获得较完整分割的人体图像.尤其对于图像分辨率较低、图像中的人体较小且存在运动模糊的情况,该方法能够获得较好的检测结果.

References

[1]  Moeslund T B, Hilton A, Krüger V. A Survey of Advances in Vision-Based Human Motion Capture and Analysis. Computer Vision and Image Understanding, 2006, 104(2): 90-126
[2]  Li Haojie, Lin Shouxun, Zhang Yongdong. A Survey of Video Based Human Motion Capture. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(11): 1645-1651 (in Chinese) (李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述.计算机辅助设计与图形学学报, 2006, 18(11): 1645-1651)
[3]  Sun Qingjie, Wu Enhua. Human Detection Based on Rectangle Fitting. Journal of Software, 2003, 14(8): 1388-1393 (in Chinese) (孙庆杰,吴恩华.基于矩形拟合的人体检测.软件学报, 2003, 14(8): 1388-1393)
[4]  Mori G, Ren Xiaofeng, Efors A A, et al. Recovering Human Body Configurations: Combining Segmentation and Recognition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 326-333
[5]  Ren Xiaofeng, Berg A C, Malik J. Recovering Human Body Configurations Using Pairwise Constraints between Parts // Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, Ⅰ: 824-831
[6]  Felzenszwalb P F, Huttenlocher D P. Pictorial Structures for Object Recognition. International Journal of Computer Vision, 2005, 61(1): 55-79
[7]  Ioffe S, Forsyth D A. Probabilistic Methods for Finding People. International Journal of Computer Vision, 2001, 43(1): 45-68
[8]  Ronfard R, Schmid C, Triggs B. Learning to Parse Pictures of People // Proc of the 7th European Conference on Computer Vision. Copenhagen, Denmark, 2002: 700-714
[9]  Hua Gang, Yang M H, Wu Ying. Learning to Estimate Human Pose with Data Driven Belief Propagation // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 747-754
[10]  Zhang Jiayong, Liu Yanxi, Luo Jiebo, et al. Body Localization in Still Images Using Hierarchical Models and Hybrid Search // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, Ⅱ: 1536-1543
[11]  Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: Wiley, 2003: 111-112
[12]  Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-620
[13]  Meer P, Georgescu B. Edge Detection with Embedded Confidence. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(12): 1351-1365
[14]  Christoudias C M, Georgescu B, Meer P. Synergism in Low Level Vision // Proc of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002, Ⅳ: 150-155
[15]  Haritaoglu I, Harwood D, Davis L S. W4: Who? When? Where? What? A Real Time System for Detecting and Tracking People // Proc of the International Conference on Automatic Face and Gesture Recognition. Nara, Japan, 1998: 222-227
[16]  Martin D R, Fowlkes C C, Malik J. Learning to Detect Natural Image Boundaries Using Local Brightness, Color and Texture Cues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549
[17]  Tilley A R. The Measure of Man and Woman: Human Factors in Design. New York, USA: John Wiley & Sons, 1993
[18]  Ramanan D, Forsyth D A. Finding and Tracking People from the Bottom up // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, Ⅱ: 467-474

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133