全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于说话人识别的基于可变因子整合的高斯混合模型

, PP. 937-942

Keywords: 可变因子,高斯混合模型,说话人识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统高斯混合模型在噪声环境下识别率明显下降的问题,在借鉴随机概率分布模型间的α因子融合机制基础上,提出基于可变因子α整合的高斯混合模型。该模型通过引入可变因子使得混合模型中不同成分所占的比重又得到一次调整。实验结果表明,通过对该模型参数进行重估计,在TIMIT/NTIMIT两种不同语料库和不同样本集的情况下识别率较传统高斯模型均有提高。尤其在噪声环境和α因子取最优值时,识别率可提高8%,在NIST评测数据集上与GMM-UBM系统对比,识别率也有提高。

References

[1]  Marriott P.On the Local Geometry of Mixture Models.Biometrika,2002,89(1): 79-93
[2]  Xu L.Advances on BYY Harmony Learning: Information Theoretic Perspective,Generalized Projection Geometry,and Independent Factor Autodetermination.IEEE Trans on Neural Networks,2004,15(4): 885-902
[3]  Amari S.Integration of Stochastic Models by Minimizing α-Divergence.Neural Computation,2007,19(10): 2780-2796
[4]  Chait M,Poeppel D,Simon J Z.Neural Response Correlates of Detection of Monaurally and Binaurally Created Pitches in Humans.Cerebral Cortex,2006,16(6): 835-848
[5]  Amari S,Nagaoka H.Methods of Information Geometry.Oxford,UK: Oxford University Press,2000
[6]  Jiang H.A General Formulation for Discriminative Learning of Generative Graphical Models.New York,USA: New York University Press,2007
[7]  Bilmes L A.A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.Berkeley,USA: University of California Press,1997
[8]  Wu D.Discriminative Preprocessing of Speech: Towards Improving Biometric Authentication.New York,USA: Springer,2006
[9]  Reynolds D A,Quatieri T F,Dunn R.Speaker Verification Using Adapted Gaussian Mixture Models.Digital Signal Processing,2000,10(3): 19-41
[10]  Choi H,Katake A,Choe K.Alpha-Integration of Multiple Evidence // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing.Dallas,USA,2010: 2210-2213
[11]  Heeyoul C,Seungjin C,Yoonsunk C.Learning Alpha-Integration with Partially-Labeled Data // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing. Dallas,USA,2010: 2058-2061
[12]  Lanckrei G,Deng M,Cristianimi N.Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast // Proc of the Pacific Symposium on Biocomputation.Hawaii,USA,2004: 300-311
[13]  Reynolds D A,Rose R C.Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models.IEEE Trans on Speech and Audio Processing,1995,3(1): 72-83
[14]  Kenny P,Ouellet P,Dehak N.A Study of Inter-Speaker Variability in Speaker Verification.IEEE Trans on Audio,Speech and Language Processing,2008,16 (5): 980-988
[15]  Muller F,Mertins A.Nonlinear Translation-Invariant Transformation for Speaker-Independent Speech Recognition.Advances in Nonlinear Speech Processing,2010,15(7): 111-119
[16]  Falthhauser R,Ruske G.Improving Speaker Recognition Performance Using Phonetically Structured Gaussian Mixture Models // Proc of the 7th European Conference on Speech Communication and Technology.Aalborg,Denmark,2001: 751-754
[17]  Wu D,Jiang H.Normalization and Transformation Techniques for Robust Speaker Recognition.Speech Recognition,2008,11(5): 1-21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133