全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

嵌入层叠混沌策略的随机粒子群算法

DOI: 10.16451/j.cnki.issn1003-6059.201510011, PP. 953-960

Keywords: 粒子群优化算法,轨迹扰动因子,层叠混沌策略,对称极值扰动

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于求解复杂问题时粒子群优化算法易出现早熟收敛的问题,通过引入轨迹扰动因子,提出随机粒子群进化迭代方程.该方程在统计行为中保证粒子向特定的收敛中心逼近,但对“旧址”的依赖性呈现出随机特性,从而使粒子群的快速跳转和迁移成为可能,避免过早落入局部陷阱.同时该进化方程还利用层叠混沌策略和对称极值扰动策略进一步增强算法的局部收敛性和全局搜索性.实验表明,由上述进化方程和改进策略构成的随机混沌粒子群算法具有鲁棒性较强、收敛速度较快和精度较高等优势,性能优于其他同源粒子群算法.

References

[1]  Kennedy J, Eberhart R C.Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks.Perth, USA, 1995, IV: 1942-1948
[2]  Jiao B, Lian Z G, Gu X S.A Dynamic Inertia Weight Particle Swarm Optimization Algorithm. Chaos, Solitons & Fractals, 2008, 37(3):698-705
[3]  Zhan Z H, Zhang J, Li Y, et al. Adaptive Particle Swarm Optimization.IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2009, 39(6): 1362-1381
[4]  Liang J J, Qin A K, Suganthan P N, et al.Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295
[5]  Richards M, Ventura D.Dynamic Sociometry in Particle Swarm Optimization // Proc of the 6th International Conference on Computational Intelligence and Natural Computing. Cary, USA, 2003: 1557-1560
[6]  Kennedy J, Mendes R. Neighborhood Topologies in Fully Informed and Best of Neighborhood Particle Swarms. IEEE Trans on Systems, Man, and Cybernetics: Applications and Reviews, 2006, 36(4):515-519
[7]  Liu W, Chen H X, Chen H N, et al.Improved Particle Swarm Optimizer Based on Predator-Prey Coevolution Model // Proc of the 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan, China, 2010, VIII: 88-91 (in Chinese)(刘 微,陈贺新,陈瀚宁,等.基于生态捕食模型的改进粒子群算法 // 第三届计算智能与工业应用国际学术研讨会.武汉, 2010, VIII: 88-91)
[8]  Chen W N, Zhang J, Lin Y, et al. Particle Swarm Optimization with an Aging Leader and Challengers. IEEE Trans on Evolutionary Computation, 2012, 17(2): 241-258
[9]  Kao Y T, Zahara E. A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions.Applied Soft Computing,2008, 8(2): 849-857
[10]  Kiranyaz S, Ince T, Yildirim A, et al.Fractional Particle Swarm Optimization in Multidimensional Search Space.IEEE Trans on Systems, Man, and Cybernetics: Cybernetics, 2010, 40(2): 298-319
[11]  Gao W F, Liu S Y, Jiao H H, et al. Particle Swarm Optimization with Search Operator of Artificial Bee Colony Algorithm. Control and Decision, 2012, 27(6): 833-838 (in Chinese)(高卫峰,刘三阳,焦合华,等.引入人工蜂群搜索算子的粒子群算法.控制与决策, 2012, 27(6): 833-838)
[12]  Wei Z,Wu L,Ge F Z, et al.Hybrid PSO Algorithm Based on Memetic Framework.Pattern Recognition and Artificial Intelligence, 2012, 25(2): 213-219 (in Chinese)(魏 臻,吴 雷,葛方振,等.基于Memetic框架的混合粒子群算法.模式识别与人工智能, 2012, 25(2): 213-219)
[13]  Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Washington, USA, 1999, III: 1951-1957
[14]  Hu W, Li Z S.A Simpler and More Effective Particle Swarm Optimization Algorithm. Journal of Software, 18(4): 861-868 (in Chinese)(胡 旺,李志蜀.一种更简化而高效的粒子群优化算法.软件学报, 2007, 18(4): 861-868)
[15]  Shi Y H, Eberhart R. A Modified Particle Swarm Optimizer // Proc of the IEEE World Congress on Computational Intelligence. Anchorage, USA, 1998: 69-73
[16]  Lü Z S, Hou Z R.Particle Swarm Optimization with Adaptive Mutation.Acta Electronica Sinica, 2004, 32(3): 416-420 (in Chinese)(吕振肃,候志荣.自适应变异的粒子群优化算法.电子学报, 2004, 32(3): 416-420)
[17]  Lü Y P, Li S Z, Chen S L, et al. Particle Swarm Optimization Based on Adaptive Diffusion and Hybrid Mutation. Journal of Software, 2007, 18(11): 2740-2751 (in Chinese)(吕艳萍,李绍滋,陈水利,等.自适应扩散混合变异机制微粒群算法.软件学报, 2007, 18(11): 2740-2751)
[18]  Meng H J, Zheng P, Mei G H, et al.Particle Swarm Optimization Algorithm Based on Chaotic Series.Control and Decision, 2006,21(3): 263-266 (in Chinese)(孟红记,郑 鹏,梅国晖,等.基于混沌序列的粒子群优化算法.控制与决策, 2006, 21(3): 263-266)
[19]  Zhou X Y, Wu Z J, Wang H, et al.Elite Opposition-Based Particle Swarm Optimization. Acta Electronica Sinica, 2013, 41(8): 1647-1652 (in Chinese)(周新宇,吴志健,王 晖,等.一种精英反向学习的粒子群优化算法.电子学报, 2013, 41(8): 1647-1652)
[20]  Zhu H M, Wu Y P.A PSO Algorithm with High Speed Convergence.Control and Decision, 2010, 25(1): 20-24, 30 (in Chinese)(朱海梅,吴永萍.一种高速收敛粒子群优化算法.控制与决策, 2010, 25(1): 20-24, 30)
[21]  Jin M, Lu H X. A Multi-subgroup Hierarchical Hybrid of Genetic Algorithm and Particle Swarm Optimization. Control Theory & Applications, 2013, 30(10): 1231-1238 (in Chinese)(金 敏,鲁华祥.一种遗传算法与粒子群优化的多子群分层混合算法.控制理论与应用, 2013, 30(10): 1231-1238)
[22]  Zhao X C, Liu G L , Liu H Q, et al. Particle Swarm Optimization Algorithm Based on Non-uniform Mutation and Multiple Stages Perturbation.Chinese Journal of Computers, 2014, 37(9): 2058-2070 (in Chinese)(赵新超,刘国莅,刘虎球,等.基于非均匀变异和多阶段扰动的粒子群优化算法.计算机学报, 2014, 37(9): 2058-2070)
[23]  Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Trans on Evolutionary Computation, 2004, 8(3): 204-210

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133