全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于用户-兴趣-项目三部图的推荐算法*

DOI: 10.16451/j.cnki.issn1003-6059.201510006, PP. 913-921

Keywords: 用户兴趣,个性化推荐,三部图,物质扩散,概率主题模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前大多数个性化推荐算法为了追求较高的推荐精度而在不同程度上受到用户兴趣过拟合问题的影响,因此提出通过挖掘用户隐含的兴趣信息进行推荐的算法.首先利用概率主题模型抽取用户兴趣分布,并建立用户-兴趣-项目加权三部图.然后在用户-兴趣和兴趣-项目的概率加权二部子图上依次利用物质扩散算法配置项目资源值,并根据项目资源值的高低排序产生Top-K推荐.在Movielens数据集上的实验表明,基于用户-兴趣-项目三部图的推荐算法能缓解过拟合问题,同时可提高准确率等方面的性能.

References

[1]  Li X, Chen H C. Recommendation as Link Prediction in Bipartite Graphs: A Graph Kernel-Based Machine Learning Approach. Decision Support Systems, 2013, 54(2): 880-890
[2]  Liu J G, Zhou T, Wang B H. Personalized Recommendation System Research Process. Progress in Natural Science, 2009, 19(1): 1-15 (in Chinese)(刘建国,周 涛,汪秉宏.个性化推荐系统的研究进展.自然科学进展, 2009, 19(1): 1-15)
[3]  Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation. Physical Review E, 2007. DOI: 10.1103/PhysRevE.76.046115
[4]  Gemmell J, Schimoler T, Ramezani M, et al. Improving Folkrank with Item-Based Collaborative Filtering [EB/OL]. [2014-08-30]. http:// ceur-ws.org/Vol-532/paper3.pdf
[5]  Brin S, Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine [EB/OL]. [2014-08-20]. http:// ilpubs.stanford. edu: 8090/361/1/1998-8.pdf
[6]  Zhang Z K, Zhou T, Zhang Y C. Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs. Physica A: Statistical Mechanics and Its Applications, 2010, 389(1): 179-186
[7]  Song Y, Zhang L, Giles C L. Automatic Tag Recommendation Algorithms for Social Recommender Systems. ACM Trans on the Web(TWEB), 2011. DOI: 10.1145/1921591.1921595
[8]  Shepitsen A, Gemmell J, Mobasher B, et al. Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering // Proc of the ACM Conference on Recommender Systems. Lausanne, Switzerland, 2008: 259-266
[9]  Krestel R, Fankhauser P. Personalized Topic-Based Tag Recommendation. Neurocomputing, 2012, 76(1): 61-70
[10]  Durao F, Dolog P. A Personalized Tag-Based Recommendation in Social Web Systems // Proc of the Workshop on Adaptation and Personalization for Web 2.0. Trento, Italy, 2009: 40-49
[11]  Symeonidis P, Nanopoulos A, Manolopoulos Y. A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis. IEEE Trans on Knowledge and Data Engineering, 2010, 22(2): 179-192
[12]  García-Crespo , Colomo-Palacios R, Gómez-Berbís J M, et al. SEMO: A Framework for Customer Social Networks Analysis Based on Semantics. Journal of Information Technology, 2010, 25(2): 178-188
[13]  Baruzzo A, Dattolo A, Pudota N, et al. Recommending New Tags Using Domain-Ontologies // Proc of the IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technologies. Milan, Italy, 2009, III: 409-414
[14]  Fu W T, Dong W. Collaborative Indexing and Knowledge Exploration: A Social Learning Model. IEEE Intelligent Systems, 2010, 27(1): 39-46
[15]  Leginus M, Dolog P, emaitis V. Improving Tensor Based Recommenders with Clustering // Proc of the 20th International Conference on User Modeling, Adaptation, and Personalization. Montreal, Canada, 2012: 151-163
[16]  Blattner M, Zhang Y C, Maslov S. Exploring an Opinion Network for Taste Prediction: An Empirical Study. Physica A: Statistical Mechanics and Its Applications, 2007, 373: 753-758
[17]  Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Fil-tering to Weave an Information Tapestry. Communications of the ACM, 1992, 35(12): 61-70

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133