全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于粒子群优化的软子空间聚类算法*

DOI: 10.16451/j.cnki.issn1003-6059.201510005, PP. 903-912

Keywords: 软子空间聚类,粒子群优化,惯性权重,有效性函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

目标函数和子空间搜索策略决定软子空间聚类算法的性能,而聚类有效性分析是衡量其性能的主要指标.针对子空间聚类性能,提出基于粒子群优化的软子空间聚类算法(SC-WPSO).首先,利用K均值类型框架,结合类间分散度和特征权重,提出模糊加权软子空间聚类目标函数.然后,为跳出局部最优,将带惯性权重的粒子群算法作为子空间的搜索策略.最后,根据提出的聚类有效性函数,选取最佳聚类数目.在数据集上的实验证实SC-PSO能提高聚类准确度,同时自动确定最佳聚类数目.

References

[1]  Sardana M, Agrawal R K. A Comparative Study of Clustering Methods for Relevant Gene Selection in Microarray Data // Proc of the 2nd International Conference on Computer Science, Engineering and Applications. New Delhi, India, 2012, I: 789-797
[2]  Tsai C Y, Chiu C C. Developing a Feature Weight Self-adjustment Mechanism for a K-means Clustering Algorithm. Computational Statistics & Data Analysis, 2008, 52(10): 4658-4672
[3]  Jing L P, Ng M K, Huang J Z, et al. An Entropy Weighting k-means Algorithm for Subspace Clustering of High-Dimensional Sparse Data. IEEE Trans on Knowledge and Data Engineering, 2007, 19(8): 1026-1041
[4]  Craenen B G W, Nandi A K, Ristaniemi T. A Novel Heuristic Memetic Clustering Algorithm // Proc of the IEEE International Workshop on Machine Learning for Signal Processing. Southampton, UK, 2013. DOI: 10.1109/MLSP.2013.6661984
[5]  Pelleg D, Moore A W. X-means: Extending k-means with Efficient Estimation of the Number of Clusters // Proc of the 17th International Conference on Machine Learning. Palo Alto, USA, 2002: 727-734
[6]  Fouchal S, Ahat M, Amor S B, et al. Competitive Clustering Algorithms Based on Ultrametric Properties. Journal of Computational Science, 2013, 4(4): 219-231
[7]  Chen X J, Xu X F, Huang J Z, et al. TW-k-means: Automated Two-Level Variable Weighting Clustering Algorithm for Multi-view Data. IEEE Trans on Knowledge and Data Engineering, 2013, 25(4): 932-944
[8]  Makarenkov V, Legendre P. Optimal Variable Weighting for Ultrametric and Additive Trees and k-means Partitioning: Methods and Software. Journal of Classification, 2001, 18(2): 245-271
[9]  Huang J Z, Ng M K, Rong H Q, et al. Automated Variable Weighting in k-means Type Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668
[10]  Song Q B, Ni J J, Wang G T. A Fast Clustering-Based Feature Subset Selection Algorithm for High Dimensional Data. IEEE Trans on Knowledge and Data Engineering, 2011, 25(1): 1-14
[11]  Bharill N, Tiwari A. Enhanced Cluster Validity Index for the Eva-luation of Optimal Number of Clusters for Fuzzy C-means Algorithm // Proc of the IEEE International Conference on Fuzzy Systems. Beijing, China, 2014: 1526-1533
[12]  Huang H C, Chuang Y Y, Chen C S. Multiple Kernel Fuzzy Clustering. IEEE Trans on Fuzzy Systems, 2011, 20 (1): 120-134
[13]  Jia J H, Xiao X, Liu B X. Similarity-Based Spectral Clustering Ensemble Selection // Proc of the 9th International Conference on Fuzzy Systems and Knowledge Discovery. Chongqing, China, 2012: 1071-1074
[14]  Deng Z H, Choi K S, Chung F L, et al. Enhanced Soft Subspace Clustering Integrating Within-Cluster and Between-Cluster Information. Pattern Recognition, 2010, 43(3): 767-781
[15]  Chen X J, Ye Y M, Xu X F, et al. A Feature Group Weighting Method for Subspace Clustering of High-Dimensional Data. Pattern Recognition, 2012, 45(1): 434-446
[16]  Gan G, Wu J. A Convergence Theorem for the Fuzzy Subspace Clustering(FSC) Algorithm. Pattern Recognition, 2008, 41(6): 1939-1947
[17]  Nidhal S, Ali M A M, Najah H. A Novel Cardiotocography Fetal Heart Rate Baseline Estimation Algorithm. Scientific Research and Essays, 2010, 5(24): 4002-4010
[18]  Cai D, He X F, Han J W. Semi-supervised Discriminant Analysis // Proc of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007. DOI: 10.1109/ICCV.2007.4408856
[19]  Selim S Z, Ismail M A.K-means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984, 6(1): 81-87
[20]  Chan E Y, Ching W K, Ng M K, et al. An Optimization Algorithm for Clustering Using Weighted Dissimilarity Measures. Pattern Re-cognition, 2004, 37(5): 943-952
[21]  Yang M S, Wu K L, Yu J. A Novel Fuzzy Clustering Algorithm // Proc of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003, II: 647-652
[22]  Wang J, Wang S T, Deng Z H. Survey on Challenges in Clustering Analysis Research. Control and Decision, 2012, 27(3): 321-328 (in Chinese)(王 骏,王士同,邓赵红.聚类分析研究中的若干问题.控制与决策, 2012, 27(3): 321-328)
[23]  Grira N, Crucianu M, Boujemaa N. Active Semi-supervised Fuzzy Clustering. Pattern Recognition, 2008, 41(5): 1834-1844
[24]  Winkler R, Klawonn F, Kruse R. Fuzzy c-means in High Dimensional Spaces. International Journal of Fuzzy System Applications, 2011, 1(1): 1-16
[25]  Lei K Y, Qiu Y H. A Study of Constrained Layout Optimization Using Adaptive Particle Swarm Optimizer. Journal of Computer Research and Development, 2006, 43(10): 1724-1731 (in Chinese)(雷开友,邱玉辉.基于自适应粒子群算法的约束布局优化研究.计算机研究与发展, 2006, 43(10): 1724-1731)
[26]  Jeng J T, Chuang C C, Tao C W. Interval Competitive Agglomeration Clustering Algorithm. Expert Systems with Applications, 2010, 37(9): 6567-6578
[27]  Xie X L, Beni G. A Validity Measure for Fuzzy Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847
[28]  Wang Q, Ye Y M, Huang J Z. Fuzzy K-means with Variable Weighting in High Dimensional Data Analysis // Proc of the 9th International Conference on Web-Age Information Management. Zhangjiajie, China, 2008: 365-372
[29]  Lu Y P, Wang S R, Li S Z, et al. Particle Swarm Optimizer for Variable Weighting in Clustering High-Dimensional Data. Machine Learning, 2011, 82(1): 43-70
[30]  Frigui H, Krishnapuram R. A Robust Competitive Clustering Algorithm with Applications in Computer Vision. IEEE Trans on Pa-ttern Analysis and Machine Intelligence, 2004, 21(5): 450-465
[31]  Rand W M. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association, 1971, 66(336): 846-850
[32]  Strehl A, Chosh J. Cluster Ensembles: A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research, 2002, 3: 583-617

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133