全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于情感上下文的语音情感推理算法*

, PP. 826-834

Keywords: 语音情感识别,情感上下文,情感推理规则,上下文语音情感特征,情感上下文交互矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对前后相邻情感语句的情感变化存在相互关联的特性,提出基于情感上下文的情感推理算法.该算法首先利用传统语音情感特征和上下文语音情感特征分别识别待分析情感语句的情感状态,然后借助情感交互矩阵及两类情感特征识别结果的置信度对待测试语句的情感状态进行融合推理.在此基础上,建立语音情感上下文推理规则,利用该规则根据相邻语句的情感状态对待分析情感语句情感状态进行调整,最终得出待分析情感语句所属的情感类别.在自行录制的包含6种基本情感数据库上的实验结果表明,与仅采用声学特征的方法相比,文中提出方法平均识别率提高12.17%.

References

[1]  Koolagudi S G, Rao K S. Emotion Recognition from Speech: A Review. International Journal of Speech Technology, 2012, 15(2): 99-117
[2]  Shinde S, Pande S. A Survey on Emotion Recognition with Respect to Database and Various Recognition Techniques. International Journal of Computer Applications, 2012, 58(3): 9-12
[3]  Zeng Z H, Pantic M, Roisman G I, et al. A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1): 39-58
[4]  Yeh J H, Pao T L, Lin C Y, et al. Segment-Based Emotion Recognition from Continuous Mandarin Chinese Speech. Computers in Human Behavior, 2011, 27(5): 1545-1552
[5]  Lu Z M, Jin H, Zhang C X, et al. Voice Activity Detection in Complex Environment Based on Hilbert-Huang Transform and Order Statistics Filter. Journal of Electronics & Information Technology, 2012, 34(1): 213-217 (in Chinese) (卢志茂,金 辉,张春祥,等.基于HHT和OSF的复杂环境语音端点检测.电子与信息学报, 2012, 34(1): 213-217)
[6]  Moattar M H, Homayounpour M M, Kalantari N K. A New Approach for Robust Realtime Voice Activity Detection Using Spectral Pattern // Proc of the IEEE International Conference on Acoustics Speech and Signal Processing. Dallas, USA, 2010: 4478-4481
[7]  Liu H P, Li X, Zheng Y, et al. Speech Endpoint Detection Based on Improved Adaptive Band-Partitioning Spectral Entropy. Journal of System Simulation, 2008, 20(5): 1366-1371 (in Chinese)(刘华平,李 昕,郑 宇,等.一种改进的自适应子带谱熵语音端点检测方法.系统仿真学报, 2008, 20(5): 1366-1371)
[8]  Ayadi M E, Kamel M S, Karray F. Survey on Speech Emotion Recognition: Features, Classification Schemes, and Databases. Pattern Recognition, 2011, 44(3): 572-587
[9]  Bozkurt E, Erzin E, Erdem  E, et al. Formant Position Based Weighted Spectral Features for Emotion Recognition. Speech Communication, 2011, 53(9/10): 1186-1197
[10]  Zavaschi T H H, Britto Jr A S, Oliveira L E S, et al. Fusion of Feature Sets and Classifiers for Facial Expression Recognition. Expert Systems with Applications, 2013, 40(2): 646-655
[11]  Kabir M M, Shahjahan M, Murase K. A New Hybrid Ant Colony Optimization Algorithm for Feature Selection. Expert System with Applications, 2012, 39(3): 3747-3763
[12]  Wei S K, Zhao Y, Zhu Z F. Video Ranking with Multi-evidenc Combination. Acta Electronica Sinica, 2010, 38(1): 167-172,166 (in Chinese)(韦世奎,赵 耀,朱振峰.基于多证据融合的视频排序方法.电子学报, 2010, 38(1): 167-171,166)
[13]  Gupta L, Chung B, Srinath M D, et al. Multichannel Fusion Models for the Parametric Classification of Differential Brain Activity. IEEE Trans on Biomedical Engineering, 2005, 52 (11) : 1869-1881
[14]  Liscombe J, Riccardi G, Hakkani-Tür D. Using Context to Improve Emotion Detection in Spoken Dialog Systems // Proc of the 9th European Conference on Speech Communication and Technology. Lisbon, Portugal, 2005: 1845-1848
[15]  Guo Y J, Liu G, Liu J, et al. Environmental Features Based Confidence Measure for Speech Recognition. Journal of Tsinghua University: Science & Technology, 2009, 49(S1): 1388-1392 (in Chinese)(国玉晶,刘 刚,刘 健,等.基于环境特征的语音识别置信度研究.清华大学学报:自然科学版, 2009, 49(S1): 1388-1392)
[16]  Metallinou A, Wllmer M, Katsamanis A, et al. Context-Sensitive Learning for Enhanced Audiovisual Emotion Classification. IEEE Trans on Affective Computing, 2012, 3(2): 184-198
[17]  Chen C, You M Y, Song M L, et al. An Enhanced Speech Emotion Recognition System Based on Discourse Information // Proc of the 6th International Conference on Computational Science. Reading, UK, 2006: 449-456
[18]  Wang X J. Research on Feature Selection Methods for Speech Emotion Recognition. Master Dissertation. Zhenjiang, China: Jiangsu University, 2007 (in Chinese)(王小佳.基于特征选择的语音情感识别研究.硕士学位论文,镇江:江苏大学, 2007)
[19]  Bai L J, Zhao X L, Mao Q R, et al. Speech Emotion Feature Based on Acoustic Context Extraction and Analysis. Journal of Chinese Computer Systems, 2013, 34(6): 1451-1456(白李娟,赵小蕾,毛启容,等.基于声学上下文的语音情感特征提取与分析.小型微型计算机系统, 2013, 34(6): 1451-1456
[20]  Tawari A, Trivedi M M. Speech Emotion Analysis: Exploring the Role of Context. IEEE Trans on Multimedia, 2010, 12(6): 502-509
[21]  Wang K C. A Novel Approach Based on Adaptive Long-Term Sub-Band Entropy and Multi-thresholding Scheme for Detecting Speech Signal. IEICE Transactions on Information and Systems, 2012, E95-D(11): 2732-2736
[22]  Calvo R A, D′Mello S. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Trans on Affective Computing, 2010, 1(1): 18-37

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133