全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平均紧性约束下的最坏分离空间平滑判别分析*

, PP. 802-807

Keywords: 判别分析,空间结构信息,空间平滑,平均散度,特征值优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间平滑的线性判别分析(SLDA)和基于空间平滑欧氏距离的线性判别分析(IMEDA)是目前结合图像特有的空间结构信息进行图像判别降维的两种主要方法,具有比线性判别分析(LDA)更显著的分类效果.与SLDA和IMEDA不同,文中通过参数化投影方向,约束平均类内散度(或紧性)上界和最大化最坏类间散度(或分离度),产生的降维算法分别称为WSLDA和WIMEDA.它们的求解最终可归结为简单的特征值优化问题,避免使用完整特征值分解的缺点.在Yale、AR和FERET标准人脸集上的实验验证它们的有效性.

References

[1]  Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd edition. Hoboken, USA: Wiley-Interscience, 2000
[2]  Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, 7(2): 179-188
[3]  Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86
[4]  Cai D, He X F, Hu Y X, et al. Learning a Spatially Smooth Subspace for Face Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis. USA, 2007: 1-7
[5]  Wang L W, Zhang Y, Feng J F. On the Euclidean Distance of Images. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1334-1339
[6]  Gu S C, Tan Y, He X G. Laplacian Smoothing Transform for Face Recognition. SCIENCE CHINA Information Sciences, 2010, 53(12): 2415-2428
[7]  Zhang Y, Yeung D Y. Worst-Case Linear Discriminant Analysis // Proc of the 24th Annual Conference on Neural Information Processing Systems. Vancouver, Canada, 2010: 2568-2576
[8]  Vapnik V N. The Nature of Statistical Learning Theory. Berlin, Germany: Springer Verlag, 1995: 1-50
[9]  Yan S C, Xu D, Zhang B Y, et al. Graph Embedding and Extension: A General Framework for Dimensionality Reduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51
[10]  Vandenberghe L, Boyd S. Semidefinite Programming. SIAM Review, 1996, 38(1): 49-95
[11]  Ying Y M, Li P. Distance Metric Learning with Eigenvalue Optimization. Jounal of Machine Learning Research, 2012, 13(1): 1-26
[12]  Lewis A S, Overton M L, Burke J V, et al. Eigenvalue Optimization. Acta Numerica, 1996, 5(1): 149-190
[13]  Overtron M L. On Minimizing the Maximum Eigenvalue of a Symmetric Matrix. SIAM Journal on Matrix Analysis and Applications, 1988, 9(2): 256-268
[14]  Frank M, Wolfe P. An Algorithm for Quadratic Programming. Naval Research Logistics, 1956, 3(1/2): 95-110
[15]  Hazan E. Sparse Approximation Solutions to Semidefinite Programs // Eduardo Sany Laber, Claudson Bornstein, Loana Tito Nogueira, et al., eds. LATIN 2008: Theoretical Informatics. Berlin, Germany: Springer, 2008: 306-316
[16]  Nesterov Y. Smooth Minimization of Non-smooth Functions. Mathematical Programming, 2005, 103(1): 127-152
[17]  Zuo W M, Liu L, Wang K Q, et al. Spatially Smooth Subspace Face Recognition Using LOG and DOG Penalties // Proc of the 6th International Symposium on Neural Networks. Wuhan, China, 2009: 439-448
[18]  Friedman J H. Regularized Discriminant Analysis. Journal of the American Statistical Association, 1989, 84(405): 165-175

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133