Adams R A, Fournier J J F. Sobolev Spaces. 2nd Edition. Amsterdam, the Netherlands: Academic Press, 2003
[2]
Wahba G. Support Vector Machines, Reproducing Kernel Hilbert Spaces, and the Randomized GACV // Schlkopf B, Burges C J C, Smola A J, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, USA: MIT Press, 1999: 69-88
[3]
Wahba G. Spline Models for Observational Data. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1990
[4]
Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[5]
Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley & Sons, 1998
[6]
Vapnik V N. The Support Vector Method of Function Estimation // Suykens J A K, Vandewalle J, eds. Nonlinear Modeling: Advanced Black-Box Techniques. Boston, UK: Kluwer Academic Publishers, 1998: 55-85
[7]
Yuan X M, Yang M, Yang Y. An Ensemble Classifier Based on Structural Support Vector Machine for Imbalanced Data. Pattern Recognition and Artificial Intelligence, 2013, 26(3): 315-320 (in Chinese)(袁兴梅,杨 明,杨 杨.一种面向不平衡数据的结构化SVM 集成分类器.模式识别与人工智能, 2013, 26(3): 315-320)
[8]
Guo H S, Wang W J. Dynamical Granular Support Vector Regression Machine. Journal of Software, 2013, 24(11): 2535-2547 (in Chinese)(郭虎升,王文剑.动态粒度支持向量回归机.软件学报, 2013, 24(11): 2535-2547)
[9]
Smola A J, Schlkopf B. A Tutorial on Support Vector Regression. Statistics and Computing, 2004, 14(3): 199-222
[10]
Ruppert D. Selecting the Number of Knots for Penalized Splines. Journal of Computational and Graphical Statistics, 2002, 11(4): 735-757
[11]
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning-Data Mining, Inference, and Prediction. 2nd Edition. New York, USA: Springer, 2009
[12]
Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Edition. New York, USA: Springer, 1997
[13]
Staicu A M, Crainiceanu C M, Carroll R J. Fast Methods for Spatially Correlated Multilevel Functional Data. Biostatistics, 2010, 11 (2): 177-194
[14]
Zhang D W, Lin X H, Sowers M F. Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome. Biometrics, 2007, 63(2): 351-362
[15]
Shin H J. Partial Functional Linear Regression. Journal of Statistical Planning and Inference, 2009, 139(10): 3405-3418
[16]
Zhou J J, Chen M. Spline Estimators for Semi-functional Linear Model. Statistics and Probability Letters, 2012, 82(3): 505-513
[17]
Lee H J. Functional Data Analysis: Classification and Regression [EB/OL]. [2013-10-20]. http://repository.tamu.edu/bitstream/handle/1969.1/2805/etd-tamu-2004B-STAT-Lee.pdf?sequence=1
[18]
Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 1999, 9(3): 293-300
[19]
Espinoza M, Suykens J A K, de Moor B. Kernel Based Partially Linear Models and Nonlinear Identification. IEEE Trans on Automatic Control, 2005, 50(10): 1602-1606
[20]
Espinoza M, Suykens J A K, de Moor B. Partially Linear Models and Least Squares Support Vector Machines // Proc of the 43rd IEEE Conference on Decision and Control. Atlantis, USA, 2004, IV: 3388-3393
[21]
Suykens J A K, Alzate C, Pelckmans K. Primal and Dual Model Representations in Kernel-Based Learning. Statistics Surveys, 2010, 4: 148-183
[22]
Luts J, Molenberghs G, Verbeke G, et al. A Mixed Effects Least Squares Support Vector Machine Model for Classification of Longitudinal Data. Computational Statistics and Data Analysis, 2012, 56(3): 611-628