全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于最小二乘支持向量机的函数型数据回归分析*

, PP. 1124-1130

Keywords: 函数型数据,最小二乘支持向量机,再生核,部分函数线性模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

部分函数线性模型是用于处理输入变量包含函数型和数值型两种数据类型而输出变量为数值的一类回归机.为提高该模型的预测精度,基于函数系数在再生核Hilbert空间上的表示,得到模型的结构化表示,将函数系数的估计转化为参数向量的估计问题,并运用最小二乘支持向量机方法得到参数估计形式.实验表明,文中算法对数值型数据的向量系数的估计与其他参数估计方法性能相近,但对函数型数据的函数系数的估计更加准确稳健,有助于确保学习机的预测精度.

References

[1]  Adams R A, Fournier J J F. Sobolev Spaces. 2nd Edition. Amsterdam, the Netherlands: Academic Press, 2003
[2]  Wahba G. Support Vector Machines, Reproducing Kernel Hilbert Spaces, and the Randomized GACV // Schlkopf B, Burges C J C, Smola A J, eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, USA: MIT Press, 1999: 69-88
[3]  Wahba G. Spline Models for Observational Data. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1990
[4]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[5]  Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley & Sons, 1998
[6]  Vapnik V N. The Support Vector Method of Function Estimation // Suykens J A K, Vandewalle J, eds. Nonlinear Modeling: Advanced Black-Box Techniques. Boston, UK: Kluwer Academic Publishers, 1998: 55-85
[7]  Yuan X M, Yang M, Yang Y. An Ensemble Classifier Based on Structural Support Vector Machine for Imbalanced Data. Pattern Recognition and Artificial Intelligence, 2013, 26(3): 315-320 (in Chinese)(袁兴梅,杨 明,杨 杨.一种面向不平衡数据的结构化SVM 集成分类器.模式识别与人工智能, 2013, 26(3): 315-320)
[8]  Guo H S, Wang W J. Dynamical Granular Support Vector Regression Machine. Journal of Software, 2013, 24(11): 2535-2547 (in Chinese)(郭虎升,王文剑.动态粒度支持向量回归机.软件学报, 2013, 24(11): 2535-2547)
[9]  Smola A J, Schlkopf B. A Tutorial on Support Vector Regression. Statistics and Computing, 2004, 14(3): 199-222
[10]  Ruppert D. Selecting the Number of Knots for Penalized Splines. Journal of Computational and Graphical Statistics, 2002, 11(4): 735-757
[11]  Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning-Data Mining, Inference, and Prediction. 2nd Edition. New York, USA: Springer, 2009
[12]  Ramsay J O, Silverman B W. Functional Data Analysis. 2nd Edition. New York, USA: Springer, 1997
[13]  Staicu A M, Crainiceanu C M, Carroll R J. Fast Methods for Spatially Correlated Multilevel Functional Data. Biostatistics, 2010, 11 (2): 177-194
[14]  Zhang D W, Lin X H, Sowers M F. Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome. Biometrics, 2007, 63(2): 351-362
[15]  Shin H J. Partial Functional Linear Regression. Journal of Statistical Planning and Inference, 2009, 139(10): 3405-3418
[16]  Zhou J J, Chen M. Spline Estimators for Semi-functional Linear Model. Statistics and Probability Letters, 2012, 82(3): 505-513
[17]  Lee H J. Functional Data Analysis: Classification and Regression [EB/OL]. [2013-10-20]. http://repository.tamu.edu/bitstream/handle/1969.1/2805/etd-tamu-2004B-STAT-Lee.pdf?sequence=1
[18]  Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 1999, 9(3): 293-300
[19]  Espinoza M, Suykens J A K, de Moor B. Kernel Based Partially Linear Models and Nonlinear Identification. IEEE Trans on Automatic Control, 2005, 50(10): 1602-1606
[20]  Espinoza M, Suykens J A K, de Moor B. Partially Linear Models and Least Squares Support Vector Machines // Proc of the 43rd IEEE Conference on Decision and Control. Atlantis, USA, 2004, IV: 3388-3393
[21]  Suykens J A K, Alzate C, Pelckmans K. Primal and Dual Model Representations in Kernel-Based Learning. Statistics Surveys, 2010, 4: 148-183
[22]  Luts J, Molenberghs G, Verbeke G, et al. A Mixed Effects Least Squares Support Vector Machine Model for Classification of Longitudinal Data. Computational Statistics and Data Analysis, 2012, 56(3): 611-628

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133