全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向低维点集配准的高效最近邻搜索法*

, PP. 1071-1077

Keywords: 欧氏距离,最近邻搜索,上确界,点集配准,迭代最近点法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高点集配准效率,设计一种适用于二维/三维点集的高效最近邻搜索法.该方法根据由模型点集的各维方差所选定的维度信息,排序模型点集中的点.借助二分查找法,将数据点集中的每个点插入至排序后的模型点集中,并利用左边第一个点确定搜索范围的上确界.当在确定范围内搜索最近邻时,可根据当前结果进一步减小待搜索范围,以便快速获得各点的最近邻.最后进行的复杂度分析和实验结果对比均验证文中方法的有效性.

References

[1]  Lu X G, Jain A K, Colbry D. Matching 2.5D Face Scans to 3D Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 31-43
[2]  Shih S W, Chuang Y T, Yu T Y. An Efficient and Accurate Me-thod for the Relaxation of Multiview Registration Error. IEEE Trans on Image Processing, 2008, 17(6): 968-981
[3]  Barber C B, Dobkin D P, Huhdanpaa H. The Quickhull Algorithm for Convex Hulls. ACM Trans on Mathematical Software, 1996, 22(4): 469-483
[4]  Mulchrone K F. Application of Delaunay Triangulation to the Near-est Neighbor Method of Strain Analysis. Journal of Structural Geology, 2003, 25(5): 689-702
[5]  Bentley J L. Multidimensional Binary Search Trees Used for Associative Searching. Communications of the ACM, 1975, 18(9): 509-517
[6]  Greenspan M, Yurick M. Approximate k-d Tree Search for Efficient ICP // Proc of the 4th International Conference on 3-D Digital Imaging and Modeling. Banff, Canada, 2003: 442-448
[7]  Nuchter A, Lingemann K, Hertzberg J. Cached k-d Tree Search for ICP Algorithms // Proc of the 6th International Conference on 3-D Digital Imaging and Modeling. Montreal, Canada, 2007: 419-426
[8]  Liu Y, Xiong Y L. Algorithm for Searching Nearest-Neighbor Based on the Bounded k-d Tree. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2008, 36(7): 73-77 (in Chinese)(刘 宇,熊有伦.基于有界k-d树的最近点搜索算法.华中科技大学学报:自然科学版, 2008, 36(7): 73-77)
[9]  Slaney M, Casey M. Locality-Sensitive Hashing for Finding Nearest Neighbors. IEEE Signal Processing Magazine, 2008, 25(2): 128-131
[10]  Hwang Y, Han B, Ahn H K. A Fast Nearest Neighbor Search Algorithm by Nonlinear Embedding // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 3053-3060
[11]  Zhu J H, Zheng N N, Yuan Z J, et al. A SLAM Approach by Combining ICP Algorithm and Particle Filter. Acta Automatica Si-nica, 2009, 35(8): 1107-1113 (in Chinese)(祝继华,郑南宁,袁泽剑,等.基于ICP算法和粒子滤波的未知环境地图创建.自动化学报, 2009, 35(8): 1107-1113)
[12]  Besl P J, McKay N D. A Method for Registration of 3-D Shapes. IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
[13]  Du S Y, Zheng N N, Ying S H, et al. Affine Iterative Closest Point Algorithm for Point Set Registration. Pattern Recognition Le-tter, 2010, 31(9): 791-799
[14]  Ying S H, Peng J G, Du S Y, et al. A Scale Stretch Method Based on ICP for 3D Data Registration. IEEE Trans on Automation Science and Engineering, 2009, 6(3): 559-565
[15]  Zhu J H, Zheng N N, Yuan Z J, et al. Robust Scaling Iterative Closest Point Algorithm with Bidirectional Distance Measurement. Electronics Letters, 2010, 46(24): 1604-1605
[16]  Ying S H, Peng J G, Zheng K J, et al. Lie Group Method for Data Set Registration Problem with Anisotropic Scale Deformation. Acta Automatica Sinica, 2009, 35(7): 867-874 (in Chinese)(应时辉,彭济根,郑开杰,等.含各向异性尺度形变数据集匹配问题的Lie群方法.自动化学报, 2009, 35(7): 867-874)
[17]  Nüchter A, Elseberg J, Schneider P, et al. Study of Parameterizations for the Rigid Body Transformations of the Scan Registration Problem. Computer Vision and Image Understanding, 2010, 114(8): 963-980

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133