全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应压缩特征选择的实时目标跟踪算法*

DOI: 10.16451/j.cnki.issn1003-6059.201504009, PP. 361-368

Keywords: 目标跟踪,自适应特征选择,方差比,均值差,差分方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对压缩感知算法中的低维特征对目标重构效果较差的问题,提出基于自适应压缩特征选择的目标跟踪算法.该算法首先提取满足目标重构要求的高维压缩特征,再通过所提出的特征选择方法选择区分度高的低维特征作为目标的外观模型,从而降低计算复杂度.为自适应选择特征,采用一种差分方法控制特征维数,满足实时性要求.实验表明,与其他算法相比,文中算法具有更强的鲁棒性和实时性.

References

[1]  Ross D A, Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141
[2]  Mei X, Ling H. Robust Visual Tracking Using l1 Minimization // Proc of the 12thInternational Conference on Computer Vision. Kyoto, Japan, 2009: 1436-1443
[3]  Wang D, Lu H C, Yang M H. Online Object Tracking with Sparse Prototypes.Trans on Image Processing, 2013, 22(1): 314-325
[4]  Li H X, Shen C H, Shi Q F. Real-Time Visual Tracking Using Compressive Sensing // Proc of the 24thConference on Computer Vision and Pattern Recognition.Providence, USA, 2011: 1305-1312
[5]  Grabner H, Grabner M, Bischof H. Real-Time Tracking via On-line Boosting // Proc of the British Machine Vision Conference. Edinburgh, UK, 2006, I: 47-56
[6]  Babenko B, Yang M H, Belongie S. Visual Tracking with Online Multiple Instance Learning // Proc of theConference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 983-990
[7]  Hare S, Saffari A, Torr P H S. Struck: Structured Output Tracking with Kernels // Proc of theInternational Conference on Computer Vision. Barcelona, Spain, 2011: 263-270
[8]  Zhang K H, Zhang L, Yang M H. Real-Time Compressive Tracking // Proc of the 12th European Conference on Computer Vision. Flo-rence, Italy, 2012: 866-879
[9]  Donoho D L. Compressed Sensing.Trans on Information Theory, 2006, 52(4): 1289-1306
[10]  Baraniuk R, Davenport M, DeVore R, et al. A Simple Proof of the Restricted Isometry Property for Random Matrices. Constructive Approximation, 2008, 28(3): 253-263
[11]  Achlioptas D. Database-Friendly Random Projections: Johnson-Lindenstrauss with Binary Coins. Journal of Computer and System Sciences, 2003, 66(4): 671-687
[12]  Ng A Y, Jordan M I. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes [EB/OL]. [2014-01-20]. http:// papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
[13]  Diaconis P, Freedman D. Asymptotics of Graphical Projection Pursuit. The Annals of Statistics, 1984, 12(3): 793-815
[14]  Collins R T, Liu Y X, Leordeanu M. Online Selection of Discriminative Tracking Features.Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643
[15]  Zhang K H, Zhang L, Yang M H. Real-Time Object Tracking via Online Discriminative Feature Selection.Trans on Image Processing, 2013, 22(12): 4664-4677

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133