全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种求解多目标最小生成树问题的有效离散粒子群优化算法*

, PP. 597-604

Keywords: 线长估计,多目标优化问题(MOP),最小生成树(MST),粒子群优化(PSO)

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种求解多目标最小生成树问题的有效离散粒子群优化算法.为获得更好的非劣前端,设计一个基于目标共享函数的适应度评价函数.引入遗传算法的变异和交叉算子,提高种群多样性并避免算法过早陷入局部最优解.基于种群的随机状态转移过程,理论分析算法的全局收敛性.实验结果表明该算法是有效的,且随着问题规模的扩大算法仍保持较好的性能.

References

[1]  Hong Xianlong, Yan Xiaolang, Qiao Changge. The Principles and Algorithms of VLSI Payout Design. Beijing, China: Sciences Press, 1998 (in Chinese) (洪先龙,严晓浪,乔长阁.超大规模集成电路布图理论与算法.北京:科学出版社, 1998)
[2]  Yan Weimin, Wu Weimin. Data Structure. 2nd Edition. Beijing, China: Tsinghua University Press, 1992: 168-174 (in Chinese) (严蔚敏,吴伟民.数据结构.第2版.北京:清华大学出版社, 1992: 168-174)
[3]  Zhou Gengui, Gen M. Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European Journal of Operational Research, 1999, 114(1): 141-152
[4]  Gottlieb J, Julstrom B A, Rothlauf F, et al. Prüfer Numbers: A Poor Representation of Spanning Trees for Evolutionary Search // Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001: 343-350
[5]  Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 1995, 2(3): 221-248
[6]  Knowles J D. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. Ph.D Dissertation. Reading, UK: University of Reading. Department of Computer Science, 2002
[7]  Chen Guolong, Guo Wenzhong, Tu Xuezhu, et al. An Improved Algorithm to Solve the Multi-Criteria Minimum Spanning Tree Problem. Journal of Software, 2006, 17(3): 364-370 (in Chinese) (陈国龙,郭文忠,涂雪珠,等.求解多目标最小生成树问题的改进算法.软件学报, 2006, 17(3): 364-370)
[8]  Chen Guolong, Chen Shuili, Guo Wenzhong, et al. A Multi-Criteria Minimum Spanning Tree Problem Based Genetic Algorithm. Information Sciences, 2007, 177(22): 5050-5063
[9]  Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory // Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39-43
[10]  Kennedy J, Eberhart R C. Swarm Intelligence. San Mateo, USA: Morgan Kaufmann, 2001
[11]  Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Optimization Algorithm // Proc of the IEEE International Conference on Systems, Man and Cybernetics. Orlando, USA, 1997, Ⅴ: 4104-4109
[12]  Clerc M. Discrete Particle Swarm Optimization—Illustrated by the Traveling Salesman Problem [EB/OL]. [2000-02-29]. http://www.mauriceclerc.net
[13]  Pan Quanke, Tasgetiren M F, Liang Y C. A Discrete Particle Swarm Optimization Algorithm for the Permutation Flowshop Sequencing Problem with Makespan Criteria // Proc of the 26th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Cambridge, UK, 2006: 19-31
[14]  Xie Tao, Chen Huowang, Kang Lishan. Evolutionary Algorithms of Multi-Objective Optimization Problems. Chinese Journal of Computers, 2003, 26(8): 997-1003 (in Chinese) (谢 涛,陈火旺,康立山.多目标优化的演化算法.计算机学报, 2003, 26(8): 997-1003)
[15]  Balling R. The Maximin Fitness Function, Multiobjective City and Regional Planning // Proc of the 2nd International Conference on Evolutionary Multi-Criterion Optimization. Faro, Portugal, 2003: 1-15
[16]  Laumanns M, Thiele L, Deb K, et al. Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation, 2002, 10(3): 263-282
[17]  Qu Zhongshui, Liu Shulan. Convergence Analysis Means of Simple Genetic Algorithm. Journal of Harbin University of Science and Technology, 2003, 8(1): 42-45 (in Chinese) (曲中水,刘淑兰.基本遗传算法的收敛性分析方法. 哈尔滨理工大学学报, 2003, 8(1): 42-45)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133