Ham H J, Lee D D, Saul L K. Semi-Supervised Alignment of Manifolds [EB/OL]. [2005-01-06]. http://cs.used.edu/~saul/papers/semi_aistats05.pdf
[3]
Yang Xin, Fu Haoying, Zha Hongyuan, et al. Semi-Supervised Nonlinear Dimensionality Reduction // Proc of the 23rd International Conferences on Machine Learning. Pittsburgh, USA, 2006: 1065-1072
[4]
Handl J, Knowles J. Semi-Supervised Feature Selection via Multiobjective Optimization // Proc of the International Joint Conferences on Neural Networks. Vancouver, Canada, 2006: 3319-3326
[5]
Zhao Zheng, Liu Huan. Semi-Supervised Feature Selection via Spectral Analysis [EB/OL]. [2007-04-26]. http://www.slam.org/proceeding/datamining/2007/dm07-075ZHAOLIV.pdf
[6]
Tian Zongruo. Tensor Analysis. Xi'an, China: Northwestern Industry University Press, 2005 (in Chinese) (田宗若.张量分析.西安:西北工业大学出版社, 2005)
[7]
Georghiades A S, Belhumeur P N, Kriegman D J. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660
[8]
Georghiades A S, Belhumeur P N, Kriegman D J. From Few to Many: Generative Models for Recognition under Variable Pose and Illumination // Proc of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2000: 277-284
[9]
Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley & Sons, 2000
[10]
He Xiaofei, Niyogi P. Locality Preserving Projections [EB/OL]. [2003-12-01]. http://books.nips.cc/papers/files/nips16/NIPS2002.AA20.pdf
[11]
Yang Jian, Zhang Daoqiang, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[12]
Zhang Daoqiang, Zhou Zhihua. (2D)2PCA: 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing, 2005, 69(1/2/3): 224-231
[13]
Zhang Daoqiang, Chen Songcan, Liu Jun. Representing Image Matrices: Eigenimages vs. Eigenvectors // Proc of the 2nd International Symposium on Neural Networks. Chongqing, China, 2005, Ⅱ: 659-664
[14]
He Xiaofei, Cai Deng, Niyogi P. Tensor Subspace Analysis [EB/OL]. [2008-05-12].http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
[15]
He Xiaofei, Cai Deng, Liu Haifeng, et al. Image Clustering with Tensor Representation // Proc of the 13th Annual ACM International Conference on Multimedia. Hilton, Singapore, 2005: 132-140
[16]
Cai Deng, He Xiaofai, Han Jiawei. Subspace Learning Based on Tensor Analysis. Technical Report, 2572, Urbana-Champaign, USA: University of Illinois. Department of Computer Science, 2005
[17]
Ye Jieping, Janardan R, Li Qi. Two-Dimensional Linear Discriminant Analysis [EB/OL]. [2004-12-13]. http://books.nips.cc/papers/files/nips17/NIPS2004_0205.pdf
[18]
Zhu Xiaojin. Semi-Supervised Learning Literature Survey. Technical Report, 1530, Madison, USA: University of Wisconsin. Department of Computer Sciences, 2006
[19]
Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means Clustering with Background Knowledge // Proc of the 18th International Conference on Machine Learning. Williamstown, USA, 2001: 577-584
[20]
Xing E P, Ng A Y, Jordan M I, et al. Distance Metric Learning, with Application to Clustering with Side-Information [EB/OL]. [2003-12-12]. http://ai.stanford.edu/~ang/papers/nips02-metric.pdf
[21]
Yu Shipeng, Yu Kai, Tresp V, et al. Supervised Probabilistic Principal Component Analysis // Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006: 464-473
[22]
Cai Deng, He Xiaofei, Han Jiawei. Semi-Supervised Discriminant Analysis [EB/OL]. [2007-10-14]. http://www.cs.uiuc.edu/homes/dengcai2/Publication/Conference/ICCV07_dengcai_SDA.pdf
[23]
Sugiyama M, Ide T, Nakajima S, et al. Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction // Proc of the 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Osaka, Japan, 2008: 333-344