全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

流形嵌入的支持向量数据描述*

, PP. 548-553

Keywords: 流形嵌入,测地距离,各向同性的特征映射(ISOMAP),支持向量数据描述(SVDD),单类分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

测地距离能在宏观层面上较真实地反映数据中所隐含的几何结构,可基于它的支持向量数据描述(SVDD)无法直接优化.为此,文中提出一种流形分类学习算法的设计框架.用原空间测地距离近似各向同性的特征映射(ISOMAP)降维空间上的欧氏距离,即在隐含ISOMAP降维后空间上执行原学习算法.按照该框架,以SVDD为例发展出嵌入的ISOMAP发现的低维流形的SVDD(mSVDD),从而解决基于测地距离的SVDD的优化问题.USPS手写体数字数据集上的实验表明,mSVDD的单类性能较SVDD有较显著提高.

References

[1]  Hautamki V, Krkkinen I, Frnti P. Outlier Detection Using k-Nearest Neighbour Graph // Proc of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004: 430-433
[2]  Bradley A P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 1997, 30(7): 1145-1159
[3]  Yan Lian, Dodier R, Mozer M C, et al. Optimizing Classifier Performance via the Wilcoxon-Mann-Whitney Statistic // Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003: 848-855
[4]  Markos M, Sameer S. Novelty Detection: A Review—Part I: Statistical Approaches. Signal Processing, 2003, 83(12): 2481-2497
[5]  Chen Bin, Feng Aimin, Chen Songcan, et al. One-Cluster Clustering Based Data Description. Chinese Journal of Computers, 2007, 30(8): 1325-1332 (in Chinese) (陈 斌,冯爱民,陈松灿,等,基于单簇聚类的数据描述.计算机学报, 2007, 30(8): 1325-1332)
[6]  Tax D. One-Class Classification—Concept-Learning in the Absence of Counter-Examples. Ph.D Dissertation. Holland, Netherlands: Delft University of Technology. Faculty of Electrical Engineering, 2001
[7]  Scholkpf B, Platt J, Shawe-Taylor J, et al. Estimating the Support of High-Dimensional Distribution. Neural Computation, 2001, 13(7): 1443-1471
[8]  Tax D, Duin R. Support Vector Domain Description. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199
[9]  Tax D, Duin R. Support Vector Data Description. Machine Learning, 2004, 54(1): 45-66
[10]  Quan Yong, Yang Jie. Modified Kernel Functions by Geodesic Distance. EURASIP Journal on Applied Signal Processing, 2004, 16(1): 2515-2521
[11]  Duda R, Hart P, Stork D. Pattern Classification. 2nd Edition. New York, USA: Wiley-Interscience, 2001
[12]  Saul L K. An Introduction to Locally Linear Embedding [EB/OL]. [2001-03-02]. http://www.cs.toronto.edu/ ~roweis/lle/papers/lleintroa4.pdf
[13]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 2319-2323
[14]  Choi H, Choi S. Robust Kernel Isomap. Pattern Recognition, 2007, 40(3): 853-862

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133