全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的太阳能电池片表面缺陷检测方法*

, PP. 517-523

Keywords: 深度学习,缺陷检测,限制玻尔兹曼机(RBM),深度置信网络(DBN)

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前对太阳能电池片的缺陷检测仍依赖人工完成,很难通过传统的CCD成像系统自动识别.作为一种多层神经网络学习算法,深度学习因对输入样本数据强大的特征提取能力而受到广泛关注.文中提出一种基于深度学习的太阳能电池片表面缺陷检测方法,该方法首先根据样本特征建立深度置信网络(DBN),并训练获取网络的初始权值;然后通过BP算法微调网络参数,取得训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测.实验表明DBN能较好地建立上述映射关系,且准确、快速地进行缺陷检测.

References

[1]  Bengio Y. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127
[2]  Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks. Science, 2006, 313(5786): 504-507
[3]  Sun Z J, Xue L, Xu Y M, et al. Overview of Deep Learning. Application Research of Computers, 2012, 29(8): 2806-2810 (in Chinese)(孙志军,薛 磊,许阳明,等.深度学习研究综述.计算机应用研究, 2012, 29(8): 2806-2810)
[4]  Bengio Y, Delalleau O. On the Expressive Power of Deep Architectures // Proc of the 22nd International Conference on Algorithmic Learning Theory. Espoo, Finland, 2011: 18-36
[5]  Yoshua B, LeCun Y. Scaling Learning Algorithms towards AI. Cambridge, USA: MIT Press, 2007
[6]  Dahl G E, Yu D, Deng L, et al. Context-Dependent Pre-trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Trans on Audio, Speech and Language Processing, 2012, 20(1): 30-42
[7]  Hinton G, Deng L, Yu D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 2012, 29(6): 82-97
[8]  Sungjoon C, Kim E, Oh S. Human Behavior Prediction for Smart Homes Using Deep Learning // Proc of the 22nd IEEE International Symposium on Robot and Human Interactive Communication. Gyeongju, Republic of Korea, 2013: 173-179
[9]  Lin M Z. Research on Face Recognition Based on Deep Learning. Master Dissertation. Dalian, China: Dalian University of Technology, 2013 (in Chinese)(林妙真.基于深度学习的人脸识别研究.硕士学位论文.大连:大连理工大学, 2013)
[10]  Wang N Y, Yeung D. Learning a Deep Compact Image Representation for Visual Tracking // Proc of the 27th Annual Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2013: 809-817
[11]  Chen Y, Zheng D Q, Zhao T J. Chinese Relation Extraction Based on Deep Belief Nets. Journal of Software, 2012, 23(10): 2572-2585 (in Chinese)(陈 宇,郑德权,赵铁军.基于Deep Belief Nets的中文名实体关系抽取.软件学报, 2012, 23(10): 2572-2585)
[12]  Tsai D M, Wu S C, Li W C. Defect Detection of Solar Cells in Electroluminescence Images Using Fourier Image Reconstruction. Solar Energy Materials and Solar Cells, 2012, 99: 250-262
[13]  Bastari A, Bruni A, Cristalli C. Classification of Silicon Solar Cells Using Electroluminescence Texture Analysis // Proc of the IEEE International Symposium on Industrial Electronics. Bari, Italy, 2010: 1722-1727
[14]  Fuyuki T, Kitiyanan A. Photographic Diagnosis of Crystalline Silicon Solar Cells Utilizing Electroluminescence. Applied Physics A: Materials Science and Processing, 2009, 96(1): 189-196
[15]  Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 2006, 18(7): 1527-1554
[16]  Smolensky P. Information Processing in Dynamical Systems: Foundations of Harmony Theory[EB/OL]. [2013-12-10]. http://www-psych.stanford.edu/~jlm/papers/PDP/Volume%201/Chap6_PDP86.pdf
[17]  Ackley D H, Hinton G E, Sejnowski T J. A Learning Algorithm for Boltzmann Machines. Cognitive Science, 1985, 9(1): 147-169
[18]  Zhang C X, Ji N N, Wang G W. Introduction of Restricted Boltzmann Machines[EB/OL]. [2013-01-11]. http://www.paper.edu.cn/releasepaper/content/201301-528 (in Chinese)(张春霞,姬楠楠,王冠伟.受限玻尔兹曼机简介[EB/OL]. [2013-01-11]. http://www.paper.edu.cn/releasepaper/content/201301-528)
[19]  Hinton G E. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 2002, 14(8): 1771-1800
[20]  Hu Y. Markov Chain Monte Carlo Based Improvements to the Learning Algorithm of Restricted Boltzmann Machines. Master Dissertation. Shanghai, China: Shanghai Jiao Tong University, 2012(in Chinese)(胡 洋.基于马尔可夫链蒙特卡罗方法的RBM学习算法改进.硕士学位论文.上海:上海交通大学, 2012)
[21]  Sutskever I, Tieleman T. On the Convergence Properties of Contrastive Divergence[EB/OL].[2013-12-20].http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_SutskeverT10.pdf
[22]  Hinton G E, Dayan P, Frey B J, et al. The "Wake-Sleep" Algorithm for Unsupervised Neural Networks. Science, 1995, 268(5214): 1158-1161
[23]  Yao M H, Li J, Wang X B. Solar Cells Surface Defects Detection Using RPCA Method. Chinese Journal of Computers, 2013, 36(9): 1943-1952 (in Chinese)(姚明海,李 洁,王宪保.基于RPCA的太阳能电池片表面缺陷检测.计算机学报, 2013, 36(9): 1943-1952)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133