Pelleg D, Moore A. Active Learning for Anomaly and Rare-Category Detection // Saul L K, Weiss Y, Bottou L, eds. Advance in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 17: 1073-1080
[2]
He J R, Carbonell J. Nearest-Neighbor-Based Active Learning for Rare Category Detection // Platt J C, Koller D, Singer Y, et al., eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2007, 20: 633-640
[3]
Agarwal R, Joshi M V. PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection) [EB/OL].[2013-05-01].http://www.siam.org/meetings/sdm01/pdf/sdm01_30.pdf
[4]
Huang H, He Q M, Chen Q, et al. Rare Category Detection Algorithm Based on Weighted Boundary Degree. Journal of Software, 2012, 23(5): 1195-1206 (in Chinese)(黄 浩,何钦铭,陈 奇,等.基于加权边界度的稀有类检测算法.软件学报, 2012, 23(5): 1195-1206)
[5]
Vatturi P, Wong W K. Category Detection Using Hierarchical Mean Shift // Proc of the 15th ACM SIGKDD Conference on Knowledge and Data Mining. New York, USA: ACM Press, 2009: 847-856
[6]
Huang H, He Q M, He J F, et al. RADAR: Rare Category Detection via Computation of Boundary Degree // Huang J Z, Cao L, Srivastava L, eds. Advances in Knowledge Discovery and Data Mi-ning. Berlin, Germany: Springer, 2011: 258-269
[7]
Xue L X, Qiu B Z. Boundary Points Detection Algorithm Based on Coefficient of Variation.Pattern Recognition and Artificial Intelligence, 2009, 22(5): 799-802 (in Chinese)(薛丽香,邱保志.基于变异系数的边界点检测算法.模式识别与人工智能, 2009, 22(5): 799-802)
[8]
He J R, Carbonell J G. Prior-Free Rare Category Detection // Proc of the SIAM Data Mining Conference. Sparks, USA, 2009: 155-163
[9]
Huang H, He Q M, Chiew K, et al. CLOVER: A Faster Prior-Free Approach to Rare-Category Detection. Knowledge and Information Systems, 2013, 35(3): 713-736
[10]
Han J W, Kamber M, Pei J. Data Mining: Concepts and Techniques. 3rd Edition.San Francisco, USA: Morgan Kaufmann, 2012
[11]
Wu J J, Xiong H, Wu P, et al. Local Decomposition for Rare Class Analysis[EB/OL]. [2013-03-01]. http://datamining.rutgers.edu/publication/COGKDD2007.pdf
[12]
Xia C Y, Hsu W, Lee M L, et al. BORDER: Efficient Computation of Boundary Points. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3): 289-303
[13]
Huang J Z, Ng M K, Rong H Q, et al. Automated Variable Weighting in K-means Type Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668
[14]
Chen L F, Guo G D, Jiang Q S. Adaptive Algorithm for Soft Subspace Clustering. Journal of Software, 2010, 21(10): 2513-2523 (in Chinese)(陈黎飞,郭躬德,姜青山.自适应的软子空间聚类算法.软件学报, 2010, 21(10): 2513-2523)
[15]
Su X K. Study on Outliner Mining Algorithms Based on Clustering. Ph. D Dissertation. Shanghai, China: Donghua University, 2010 (in Chinese)(苏晓珂.基于聚类的异常挖掘算法研究.博士学位论文.上海:东华大学, 2010)
[16]
Qiu B Z, Yue F, Shen J Y. BRIM: An Efficient Boundary Points Detecting Algorithm // Zhou Z H, Li H, Yang Q, eds. Advances in Knowledge Discovery and Data Mining. Heidelberg, Germany: Springer-Verlag, 2007: 761-768