全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于簇间分离性的稀有类识别算法*

, PP. 502-508

Keywords: 稀有类,,密度,特征权重,分离性

Full-Text   Cite this paper   Add to My Lib

Abstract:

稀有类挖掘是数据挖掘的一个重要研究领域,具有广泛的应用背景.文中针对传统稀有类识别算法存在的缺陷,提出一种基于密度差异与簇间分离性判据相结合的稀有类识别算法(RDACS).该算法以特征权重相似度作为稀有类簇与周围数据样本间分离性的判据,并辅以积极学习的方法实现稀有类识别.在UCI公共数据集和KDD99数据集上的实验表明,与现有的同类算法相比,RDACS在询问次数指标上有较明显优势,能提高效率并减少人为误差,是现有稀有类识别方法的一种补充算法.

References

[1]  Pelleg D, Moore A. Active Learning for Anomaly and Rare-Category Detection // Saul L K, Weiss Y, Bottou L, eds. Advance in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 17: 1073-1080
[2]  He J R, Carbonell J. Nearest-Neighbor-Based Active Learning for Rare Category Detection // Platt J C, Koller D, Singer Y, et al., eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2007, 20: 633-640
[3]  Agarwal R, Joshi M V. PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection) [EB/OL].[2013-05-01].http://www.siam.org/meetings/sdm01/pdf/sdm01_30.pdf
[4]  Huang H, He Q M, Chen Q, et al. Rare Category Detection Algorithm Based on Weighted Boundary Degree. Journal of Software, 2012, 23(5): 1195-1206 (in Chinese)(黄 浩,何钦铭,陈 奇,等.基于加权边界度的稀有类检测算法.软件学报, 2012, 23(5): 1195-1206)
[5]  Vatturi P, Wong W K. Category Detection Using Hierarchical Mean Shift // Proc of the 15th ACM SIGKDD Conference on Knowledge and Data Mining. New York, USA: ACM Press, 2009: 847-856
[6]  Huang H, He Q M, He J F, et al. RADAR: Rare Category Detection via Computation of Boundary Degree // Huang J Z, Cao L, Srivastava L, eds. Advances in Knowledge Discovery and Data Mi-ning. Berlin, Germany: Springer, 2011: 258-269
[7]  Xue L X, Qiu B Z. Boundary Points Detection Algorithm Based on Coefficient of Variation.Pattern Recognition and Artificial Intelligence, 2009, 22(5): 799-802 (in Chinese)(薛丽香,邱保志.基于变异系数的边界点检测算法.模式识别与人工智能, 2009, 22(5): 799-802)
[8]  He J R, Carbonell J G. Prior-Free Rare Category Detection // Proc of the SIAM Data Mining Conference. Sparks, USA, 2009: 155-163
[9]  Huang H, He Q M, Chiew K, et al. CLOVER: A Faster Prior-Free Approach to Rare-Category Detection. Knowledge and Information Systems, 2013, 35(3): 713-736
[10]  Han J W, Kamber M, Pei J. Data Mining: Concepts and Techniques. 3rd Edition.San Francisco, USA: Morgan Kaufmann, 2012
[11]  Wu J J, Xiong H, Wu P, et al. Local Decomposition for Rare Class Analysis[EB/OL]. [2013-03-01]. http://datamining.rutgers.edu/publication/COGKDD2007.pdf
[12]  Xia C Y, Hsu W, Lee M L, et al. BORDER: Efficient Computation of Boundary Points. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3): 289-303
[13]  Huang J Z, Ng M K, Rong H Q, et al. Automated Variable Weighting in K-means Type Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668
[14]  Chen L F, Guo G D, Jiang Q S. Adaptive Algorithm for Soft Subspace Clustering. Journal of Software, 2010, 21(10): 2513-2523 (in Chinese)(陈黎飞,郭躬德,姜青山.自适应的软子空间聚类算法.软件学报, 2010, 21(10): 2513-2523)
[15]  Su X K. Study on Outliner Mining Algorithms Based on Clustering. Ph. D Dissertation. Shanghai, China: Donghua University, 2010 (in Chinese)(苏晓珂.基于聚类的异常挖掘算法研究.博士学位论文.上海:东华大学, 2010)
[16]  Qiu B Z, Yue F, Shen J Y. BRIM: An Efficient Boundary Points Detecting Algorithm // Zhou Z H, Li H, Yang Q, eds. Advances in Knowledge Discovery and Data Mining. Heidelberg, Germany: Springer-Verlag, 2007: 761-768
[17]  DARPA Intrusion Detection Evaluation[DB/OL]. [2013-03-10]. http://www.ll.mit.edu/IST/ideval/index.html.
[18]  KDD-CUP-99 Task Description[DB/OL]. [2013-03-10]. https://kdd.ics.uci.edu/databases/kddcup99/task.html

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133