全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混合差分蜂群算法的贝叶斯网络结构学习*

, PP. 540-545

Keywords: 贝叶斯网络,差分进化算法,蜂群算法,云自适应理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

贝叶斯网络的结构学习是贝叶斯网络理论模型的核心,而现有的贝叶斯网络结构学习算法一般存在效率偏低的问题.针对此问题,文中提出基于混合差分蜂群算法的贝叶斯网络结构学习算法.该算法首先利用最大生成树准则得到初始种群,然后利用差分进化算法中的交叉、变异规则优化初始种群.在使用差分进化算法的过程中,分别将蜂群算法应用于变异阶段和优化改进交叉阶段,并且将云自适应理论应用于选择阶段选择生成个体.在经典贝叶斯网络上的仿真实验证明,文中算法在贝叶斯网络结构学习中具有较强的寻优能力.

References

[1]  Frideman N, Linial M, Nachman I. Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology, 2000, 7(3/4): 601-620
[2]  Chickering D M, Heckerman D, Meek C. Large-Sample Learning of Bayesian Networks Is NP-Hard. Journal of Machine Learning Research, 2004, 5: 1287-1330
[3]  Cheng J, Bell D, Liu W R, et al. Learning Bayesian Networks from Data: An Efficient-Theory Based Approach. Artificial Intelligence, 2002, 137(1/2): 43-90
[4]  Storn R, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 1997, 11(4): 341-359
[5]  Gao W F, Liu S Y, Jiang F, et al. Hybrid Artificial Bee Colony Algorithm. Systems Engineering and Electronics, 2011, 33(5): 1167-1170 (in Chinese)(高卫峰,刘三阳,姜 飞,等.混合人工蜂群算法.系统工程与电子技术, 2011, 33(5): 1167-1170)
[6]  Larranaga P, Poza M, Yurramendi Y, et al. Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(9): 912-926
[7]  Sahin F, Yavuz M C, Arnavu Z, et al. Fault Diagnosis for Airplane Engines Using Bayesian Networks and Distributed Particle Swarm Optimization. Parallel Computing, 2007, 33(2): 124-143
[8]  Bao L, Zeng J C. A Bi-group Differential Artificial Bee Colony Algorithm. Control Theory & Applications, 2011, 28(2): 266-272 (in Chinese)(暴 励,曾建潮.一种双种群差分蜂群算法.控制理论与应用, 2011, 28(2): 266-272)
[9]  Lu Y L, Zhou J Z, Li Y H, et al. Adaptive Differential Evolution Algorithm Combined with Chaotic Search. Computer Engineering and Applications, 2008, 44(10): 31-33 (in Chinese)(卢有麟,周建中,李英海,等.基于混沌搜索的自适应差分进化算法.计算机工程与应用, 2008, 44(10): 31-33)
[10]  Wei X Q, Zhou Y Q, Huang H J, et al. Adaptive Particle Swarm Optimization Algorithm Based on Cloud Theory. Computer Engineering and Applications, 2009, 45(1): 48-51 (in Chinese)(韦杏琼,周永权,黄华娟,等.云自适应粒子群算法.计算机工程与应用, 2009, 45(1): 48-51)
[11]  Shen J J, Lin F. Structure Learning of Bayesian Network Using Adaptive Hybrid Memetic Algorithm. Systems Engineering and Electronics, 2012, 34(6): 1293-1298 (in Chinese)(沈佳杰,林 峰.基于混合自适应Memetic算法的贝叶斯网络结构学习.系统工程与电子技术, 2012, 34(6): 1293-1298)
[12]  Xu L J, Huang J G, Wang H J, et al. Hybrid Optimized Algorithm for Learning Bayesian Network Structure. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5): 633-639 (in Chinese)(许丽佳,黄建国,王厚军,等.混合优化的贝叶斯网络结构学习.计算机辅助设计与图形学学报, 2009, 21(5): 633-639)
[13]  Wu H, Wang W P, Yang F. Structure Learning Method of Bayesian Network with Prior Information. Systems Engineering and Electronics, 2012, 34(12): 2585-2591 (in Chinese)(吴 红,王维平,杨 峰.融合先验信息的贝叶斯网络结构学习方法.系统工程与电子技术, 2012, 34(12): 2585-2591)
[14]  Tsamardinos I, Brown L E, Aliferis C F. The Max-Min Hill-Clim-bing Bayesian Network Structure Learning Algorithm. Machine Learning, 2006, 65(1): 31-78

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133