全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于调和随机权网络与曲波变换的图像分类方法*

, PP. 509-516

Keywords: 图像分类,调和随机权网络,快速离散曲波变换,局部判别定位法

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像分类是图像处理研究中重要且基本的问题之一,而设计有效的特征提取方法和快速高精度的分类器则是图像分类研究的关键.文中以随机权网络算法为基础,结合多项式函数能有效逼近目标函数相对平缓部分的优点,提出调和随机权网络算法,并以此算法作为分类器,结合快速离散曲波变换和局部判别定位法,给出一种图像分类方法.该方法首先利用快速离散曲波变换提取图像特征,然后依据局部判别定位法对所提取的图像特征降维,最后运用所提出的调和随机权网络分类器识别降维的特征,从而有效实现图像分类.实验表明文中方法具有更高的识别率和更快的识别速度.

References

[1]  Murtagh F, Starck J L. Wavelet and Curvelet Moments for Image Classification: Application to Aggregate Mixture Grading. Pattern Recognition Letter, 2008, 29(10): 1557-1564
[2]  Donoho D L, Duncan M R. Digital Curvelet Transform: Strategy, Implementation and Experiments[EB/OL]. [2012-12-20]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1172&rep=rep1&type=pdf
[3]  Candès E J, Demanet L, Donoho D L, et al. Fast Discrete Curvelet Transforms. Multiscale Modelling Simulation, 2006, 5(3): 861-899
[4]  Hu H F. Variable Lighting Face Recognition Using Discrete Wavelet Transform. Pattern Recognition Letters, 2011, 32(13): 1526-1534
[5]  Cheng S S, Yang Y B, Li Y W. Study on Classification Based on Image Fusion with Curvelet Transform. Proc of SPIE, 2007. DOI:10.1117/12.742231
[6]  Sun A R, Tan Y H. Hyperspectral Data Classification Using Image Fusion Based on Curvelet Transform. Proc of SPIE, 2007.DOI:10.1117/12.750049
[7]  Mandal T, Wu Q M J, Yuan Y. Curvelet Based Face Recognition via Dimension Reduction. Signal Processing, 2009, 89(12): 2345-2353
[8]  Gan J Y, He S B. Nonlinear Radon Transform and Its Application to Face Recognition. Pattern Recognition and Artificial Intelligence, 2011, 24(3): 405-410 (in Chinese)(甘俊英,何思斌.非线性Radon变换及其在人脸识别中的应用.模式识别与人工智能, 2011, 24(3): 405-410)
[9]  Cao F L, Xu Z B, Liang J Y. Approximation of Polynomial Functions by Neural Network: Construction of Network and Algorithm of Approximation. Chinese Journal of Computers, 2003, 26(8): 906-912 (in Chinese)(曹飞龙,徐宗本,梁吉业.多项式函数的神经网络逼近:网络的构造与逼近算法.计算机学报, 2003, 26(8): 906-912)
[10]  Giberti M J, Doboli A. Adaptive Precision Neural Networks for Image Classification // Proc of the NASA/ESA Conference on Adaptive Hardware and Systems. Noordwijk, the Netherlands, 2008: 244-251
[11]  Cheng Y, Lu J, Yahagi T. Car License Plate Recognition Based on the Combination of Principal Components Analysis and Radial Basis Function Networks // Proc of the 7th International Conference of Signal Processing. Beijing, China, 2004, II: 1455-1458
[12]  Ng W W Y, Dorado A, Yeung D S, et al. Image Classification with the Use of Radial Basis Function Neural Networks and the Minimization of the Localized Generalization Error. Pattern Recognition, 2007, 40(1): 19-32
[13]  Fu Y, Wang Y W, Wang W Q, et al. Content-Based Natural Image Classification and Retrieval Using SVM. Chinese Journal of Computers, 2003, 26(10): 1261-1265 (in Chinese)(付 岩,王耀威,王伟强,等.SVM用于基于内容的自然图像分类和检索.计算机学报, 2003, 26(10): 1261-1265)
[14]  Cybenko G. Approximation by Superposition of a Sigmoidal Functions. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314
[15]  Hornik K. Some New Results on Neural Network Approximation. Neural Networks, 1993, 6(8): 1069-1072
[16]  Chen T P, Chen H, Liu R W. Approximation Capability in C(n)by Multiplayer Feedforward Networks and Related Problems. IEEE Trans on Neural Networks, 1995, 6(1): 25-30
[17]  Xu Z B, Cao F L. The Essential Order of Approximation for Neural Networks. Science in China: Series F, 2004, 47(1): 97-112
[18]  Rowley H A, Baluja S, Kanade T. Neural Network-Based Face Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-38
[19]  Er Meng J, Wu S Q, Lu J W, et al. Face Recognition with Radial Basis Function (RBF) Neural Networks. IEEE Trans on Neural Networks, 2002, 13(3): 697-710
[20]  Ma L Y, Khorasani K. Facial Expression Recognition Using Constructive Feedforward Neural Networks. IEEE Trans on Systems, Man and Cybernetics: Part B, 2004, 34(3): 1588-1595
[21]  de Diego I M, Serrano A, Conde C, et al. Face Verification with a Kernel Fusion Method. Pattern Recognition Letters, 2010, 31(9): 837-844
[22]  Pao Y H, Park G H, Sobajic D J. Learning and Generalization Characteristics of the Random Vector Functional-Link Net. Neurocomputing, 1994, 6(2): 163-180
[23]  Igelnik B, Pao Y H. Stochastic Choice of Basis Functions in Adaptive Function Approximation and the Functional-Link Net. IEEE Trans on Neural Networks, 1995, 6(6): 1320-1329
[24]  Schmidt W F, Kraaijveld M A, Duin R P W. Feed forward Neural Networks with Random Weights // Proc of the 11th IAPR International Conference on Pattern Recognition. the Hague, the Netherlands, 1992, II: 1-4
[25]  Igelnik B, Pao Y H. Additional Perspectives on Feedforward Neural-Nets and the Functional Link // Proc of the International Joint Conference on Neural Networks. Nagoya, Japan, 1993, Ⅲ: 2284-2287
[26]  Tyukin J Y, Prokhorov D V. Feasibility of Random Basis Function Approximators for Modeling and Control // Proc of the IEEE International Symposium on Intelligent Control. Saint Petersburg, Russia, 2009: 1391-1396
[27]  Duchon J. Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces. Lecture Notes in Mathematics, 1977, 571: 85-100
[28]  Rao C R, Mitra S K. Generalized Inverse of Matrices and Its Applications. New York, USA: Wiley, 1971
[29]  Hanbury A. A Survey of Methods for Image Annotation. Journal of Visual Languages and Computing, 2008, 19(5): 617-627
[30]  Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108
[31]  Feng G C, Yuen P C, Dai D Q. Human Face Recognition Using PCA on Wavelet Subband. Journal of Electronic Imaging, 2000, 9(2): 226-233
[32]  Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Re-cognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[33]  Zhang D Q, Zhou Z H. (2D)2PCA: Two-Directional Two-Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing, 2005, 69(1/2/3): 224-231
[34]  Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent Component Analysis. IEEE Trans on Neural Networks, 2002, 13(6): 1450-1464
[35]  Lu J, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using LDA-Based Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 195-200
[36]  Schelkopf B, Smola A, Mueller K R. Kernel Principal Component Analysis[EB/OL]. [2012-12-20]. http://www1.cs.columbia.edu/~cleslie/cs4761/papers/scholkopf_kernel.pdf
[37]  Yang J, Frangi A F, Yang J Y, et al. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230-244
[38]  Zhang T H, Tao D C, Yang J. Discriminative Locality Alignment // Proc of the 10th European Conference on Computer Vision. Marseille, France, 2008, I: 725-738
[39]  Huang K, Aviyente S.Wavelet Feature Selection for Image Classification. IEEE Trans on Image Processing, 2008, 17(9): 1709-1720
[40]  Jemai O, Zaied M, Amar C B, et al. FBWN: An Architecture of Fast Beta Wavelet Networks for Image Classification // Proc of the International Joint Conference on Neural Networks. Barcelona, Spain, 2010: 1-8
[41]  Chen J T, Wu C C. Discriminant Waveletfaces and Nearest Feature Classifiers for Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1644-1649
[42]  Zhang B L, Zhang H H, Ge S S. Face Recognition by Applying Wavelet Subband Representation and Kernel Associative Memory. IEEE Trans on Neural Networks, 2004, 15(1): 166-177
[43]  Zhao M H, Li P, Liu Z F. Face Recognition Based on Wavelet Transform Weighted Modular PCA // Proc of the Congress on Image and Signal Processing. Haikou, China, 2008, IV: 589-593

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133