全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于免疫猫群优化算法的矢量量化的码书设计及语音识别*

, PP. 577-583

Keywords: 猫群优化算法,克隆扩增,码书设计,语音识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

在矢量量化的码书设计过程中,针对传统的LBG算法对初始码书选取的依赖性及易陷入局部最优的缺陷,提出基于免疫猫群优化算法的矢量量化码书设计.将整个种群分为搜索组和跟踪组,运用克隆扩增算子在搜寻组中进行局部搜索,根据适应度值大小调节变异个体数目,保持解的多样性.运用动态疫苗提取与接种算子使跟踪组个体基因与疫苗进行交叉变异,向最优解靠拢,防止无监督交叉变异可能引起的退化现象.通过浓度平衡算子和选择算子更新子代种群,防止种群“早熟”.将训练出全局最优码书输入到HMM模型进行训练和识别,实验结果表明,基于免疫猫群优化算法的矢量量化码书设计不依赖于初始码书选取,鲁棒性强且降低语音识别误差率.

References

[1]  Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 1989, 77(2): 257-286
[2]  Linde Y, Buzo A, Gray R M. An Algorithm for Vector Quantizer Design. IEEE Trans on Communications, 1980, 28(1): 84-95
[3]  Soong F K, Rosenberg A E, Rabiner L R, et al. A Vector Quantization Approach to Speaker Recognition // Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Tampa, USA, 1985: 387-390
[4]  Yen C C, Shen C Y, Chen M S. A Two-Phase Hybrid Codebook Generation Technique for Vector Quantization // Proc of the 17th IEEE International Conference on Image Processing. Hong Kong, China, 2010: 4309-4312
[5]  Yuan Y J, Zhou Q, Zhao P H. Vector Quantization Codebook Design Method for Speech Recognition Based on Genetic Algorithm // Proc of the 2nd International Conference on Information Engineering and Computer Science. Wuhan, China, 2010: 1-4
[6]  Li X J, Xu L P, Yang L. An Improved Particle Swarm Optimization Algorithm for Vector Quantization. Pattern Recognition and Artificial Intelligence, 2008, 21(3): 285-289 (in Chinese)(李小捷,许录平,杨 莉.应用于矢量量化的改进粒子群优化算法.模式识别与人工智能, 2008, 21(3): 285-289)
[7]  Li X, Luo X H, Zhang J H. Codebook Design for Image Vector Quantization with Ant Colony Optimization. Acta Electronica Sinica, 2004, 32(7): 1082-1085 (in Chinese)(李 霞,罗雪晖,张基宏.基于人工蚁群优化的矢量量化码书设计算法.电子学报, 2004, 32(7): 1082-1085)
[8]  Chu S C, Tsai P W, Pan J S. Cat Swarm Optimization // Proc of the 9th Pacific Rim International Conference on Artificial Intelligence. Guilin, China, 2006: 854-588
[9]  Chu S C, Tsai P W. Computational Intelligence Based on the Behavior of Cats. International Journal of Innovative Computing, Information and Control, 2007, 3(1): 163-173
[10]  Tsai P W, Pan J S, Chen S M, et al. Parallel Cat Swarm Optimization // Proc of the International Conference on Machine Learning and Cybernetics. Kunming, China, 2008, VI: 3328-3333
[11]  Liu R C, Shen Z C, Jiao L C, et al. Immunodomaince Based Clonal Selection Clustering Algorithm // Proc of the IEEE Congress on Evolutionary Computation. Barcelona, Spain, 2010: 1-7
[12]  Yan X H. An Artificial Immune-Based Intrusion Detection Model Using Vaccination Strategy. Acta Electronica Sinica, 2009, 37(4): 780-785 (in Chinese)(严宣辉.应用疫苗接种策略的免疫入侵检测模型.电子学报, 2009, 37(4): 780-785)
[13]  Yang S Y, Zhang H. Swarm Intelligence and Bionic Calculation-MATLAB Implementation. Beijing, China: Publishing House of Electronics Industry, 2012: 186-189 (in Chinese)(杨淑莹,张 桦.群体智能与仿生计算——MATLAB技术实现.北京:电子工业出版社, 2012: 186-189)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133