全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
煤炭学报  2013 

基于ASGSO-SVR模型的瓦斯传感器故障诊断

, PP. 518-523

Keywords: 瓦斯传感器,故障诊断,ASGSO算法,支持向量回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现行煤矿瓦斯传感器常见的卡死、冲击、漂移等故障,运用支持向量回归机建立多传感器数据融合的瓦斯浓度预测模型,详细研究影响该预测模型精度的相关参数选择方法,提出用ASGSO算法自适应优化支持向量机预测模型参数的算法,将模型预测结果与现场实测瓦斯浓度相比较得到残差δ,用于对瓦斯传感器故障的诊断。用现场监控数据对该方法进行离线仿真实验,得到残差信号的变化曲线。通过选择合理的阈值,判断传感器是否处于故障状态。结果表明,ASGSO算法参数优化对提高SVR预测模型的精度有很大帮助,此方法对瓦斯传感器的常见故障的诊断是正确和有效的。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133