全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TCSC系统的自适应minimax干扰抑制控制器设计

, PP. 1894-1897

Keywords: 晶闸管控制串联补偿器,耗散Hamilton,系统,L2,增益干扰抑制,minimax,参数映射

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对含有未知外部干扰和不确定参数的非线性晶闸管控制串联补偿器(TCSC)系统,提出一种L2增益干扰抑制算法.将minimax方法引入耗散Hamilton系统,消除了不等式假设条件的约束;构造检验函数,推算出系统所能承受的最大干扰程度,降低了传统干扰处理方法的保守性;采用参数映射方法设计自适应律,提高了参数跟踪效率.最后通过机械功率和对地短路故障的仿真结果表明了所提出的控制方案能够有效改善系统的暂态性能.

References

[1]  孙元章, 焦晓红, 申铁龙. 电力系统非线性鲁棒控制[M]. 北京: 清华大学出版社, 2008: 201-213.
[2]  (Sun Y Z, Jiao X H, Shen T L. Nonlinear robust control of power systems[M]. Beijing: Tsinghua University Press, 2008: 201-213.)
[3]  Sun Y Z, Liu Q J, Song Y H, et al. Hamiltonian modelling and nonlinear disturbance attenuation control of TCSC for improving power system stability[J]. IEE Proc of Control Theory and Applications, 2002, 149(4): 278-284.
[4]  刘前进, 孙元章, 宋永华, 等. FACTS 的PCH 模型与自适 应L2增益控制(二) 应用篇[J]. 电力系统自动化, 2001, 25(16): 1-5.
[5]  (Liu Q J, Sun Y Z, Song Y H, et al. PCH models of FACTS with adaptive L2-gain control part two application[J]. Automation of Electric Power Systems, 2001, 25(16): 1-5.)
[6]  Wang Y Z, Feng G, Cheng D Z, et al. Adaptive?L2 disturbance attenuation control of multi-machine power systems with SMES units[J]. Automatica, 2006, 42(7): 1121-1132.
[7]  Li W L, Jing Y W, Dimirovski G M, et al. Robust nonlinear control of TCSC for power system via adaptive
[8]  Backstepping design[C]. Proc of 2003 IEEE Conf on Control Applications. Turkey, 2003: 296-300.
[9]  Sun L Y, Zhao J, Dimirovski G M. Nonlinear robust controller design for thyristor controlled series compensation[J]. Int J of Innovative Computing, Information and Control, 2009, 5(4): 981-989.
[10]  Wang Y F, Chai T Y, Zhang Y M. State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems[J]. Information Sciences, 2010, 180(24): 5029-5040.
[11]  Tong S C, Li Y M. Fuzzy adaptive robust Backstepping stabilization for SISO nonlinear systems with unknown virtual control direction[J]. Information Sciences, 2010, 180(23): 4619-4640.
[12]  Kogan M M. Solution to the inverse problem of minmax control and worst case disturbance for linear continuous- time systems [J]. IEEE Trans on Automatic Control, 1998, 43(5): 670-674.
[13]  Jiang N, Liu B, Jing Y W. The design of nonlinear disturbance attenuation controller for TCSC robust model of power system[J]. Nonlinear Dynamic, 2012, 67(3): 1863-1870.
[14]  付俊, 冯佳昕, 赵军. TCSC 控制的一种新自适应Backstepping 方法[J]. 控制与决策, 2006, 21(10): 1163-1171.
[15]  (Fu J, Feng J X, Zhao J. Novel adaptive Backstepping method for TCSC control[J]. Control and Decision, 2006, 21(10): 1163-1171.)
[16]  Bakker R, Annaswamy A M. Stability and robustness properties of a simple adaptive controller[J]. IEEE Trans on Automatic Control, 1996, 41(7): 1352-1358.
[17]  Akellaa M R, Subbaraob K. A novel parameter projection mechanism for smooth and stable adaptive control[J]. Systems & Control Letters, 2005, 54(1): 43-51.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133