(Wang X M, Wang S T. Minimum variance support vector regression[J]. Control and Decision, 2010, 25(4): 556- 561.)?
[4]
Jayadeva Khemchandani R. Twin support vector machines for pattern classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.?
[5]
Shao Y, Zhang C, Wang X. Improvements on twin support vector machines[J]. IEEE Trans on Neural Networks, 2011, 22(6): 962-968.?
[6]
Shao Y, Deng N, Yang Z. Least squares recursive projection twin support vector machine for classification[J]. Pattern Recognition, 2012, 45(6): 2299-2307.?
[7]
Shao Y, Deng N, Chen W. Improved generalized eigenvalue proximal support vector machine[J]. IEEE Signal Processing Letters, 2013, 20(3): 213-216.?
[8]
Peng X. TSVR: An efficient twin support vector machine for regression[J]. Neural Networks, 2010, 23(3): 365-372.?
[9]
Shao Y, Zhang C, Yang Z. An ??-twin support vector machine for regression[J]. Neural Computing?& Applications, 2012, 23(1): 175-185.
[10]
Mangasarian O L, Wild E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
[11]
Khemchandani R, Karpatne A, Chandra S. Generalized eigenvalue proximal support vector regressor[J]. Expert Systems with Applications, 2011, 38(10): 13136-13142.
[12]
Jiang L, Zhang K. Efficient and robust feature extraction by maximum margin criterion[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2004: 97-104.
[13]
Parlett B. The symmetric eigenvalue problem[M], Philadelphia: SIAM Press, 1998: 61-80.
[14]
Tikhonov A, Arsen V. Solutions of ill-posed problems[M]. New York: Wiley Press, 1977: 20-29.
[15]
Mercer J. Functions of positive and negative type and the connection with the theory of integal equations[J]. Philosophical Trans of the Royal Society of London, 1909, 209(1): 415-446.
[16]
Chang C, Lin C. LIBSVM: A library for support vector machines[J]. ACM Trans on Intelligent Systems and Technology, 2011, 2(3): 1-27.