全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

区间灰数序列的灰色预测模型构建方法

, PP. 1912-1914

Keywords: 灰色系统理论,区间灰数,认知程度,混合序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究包含实数、区间灰数的混合型预测问题.首先通过计算灰数层的面积和区间灰数的认知程度,将区间灰数序列转变成实数序列;然后分别预测灰数层的面积和区间灰数的认知程度,推导还原得到区间灰数预测模型;最后通过与现有文献中的实例进行对比,说明了所提出的建模方法在避免区间灰数之间代数运算的情况下,提高了建模精度.

References

[1]  王义闹. GM(1,1)逐步优化直接建模方法的推广[J]. 系 统工程理论与实践, 2003, 23(2): 116-120.
[2]  (Wang Y N. An extended step by step optimum direct modeling method of GM(1,1)[J]. System Engineering-Theory & Practice, 2003, 23(2): 116-120.)
[3]  曾波, 刘思峰, 谢乃明, 等. 基于灰数带及灰数层的区间灰数预测模型[J]. 控制与决策, 2010, 25(10): 1585-1588.
[4]  (He J, Zhao H Z, Xiao L, et al. Preference method for solving hybrid multiple attribute decision making problems[J]. Control and Decision, 2009, 24(4): 579-583.)
[5]  邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002: 8-23.
[6]  (Deng J L. The base of grey theory[M]. Wuhan: Press of Huazhong University of Science & Technology, 2002: 8-23.)
[7]  Liu S F, Lin Y. Grey systems: Theory and applications[M]. London: Springer, 2010: 33-36.
[8]  袁潮清, 刘思峰, 张可. 基于发展趋势和认知程度的区间灰数预测[J]. 控制与决策, 2011, 26(2): 313-315.
[9]  (Yuan C Q, Liu S F, Zhang K. Prediction model for interval grey number based on trend and cognition[J]. Control and Decision, 2011, 26(2): 313-315.)
[10]  (Zeng B, Liu S F, Xie N M, et al. Prediction model for interval grey number based on grey band and grey layer[J]. Control and Decision, 2010, 25(10): 1585-1588.)
[11]  曾波, 刘思峰, 崔杰. 白化权函数已知的区间灰数预测模型[J]. 控制与决策, 2010, 25(12): 1815-1819.
[12]  (Zeng B, Liu S F, Cui J. Prediction model for interval grey number with known weight function[J]. Control and Decision, 2010, 25(10): 1815-1819.)
[13]  Tsaur R C. The development of an interval grey regression model for limited time series forecasting[J]. Expert Systems with Applications, 2010, 37(2): 1200-1206.
[14]  何峻, 赵宏钟, 肖立, 等. 混合型多属性决策问题的序关系求解方法[J]. 控制与决策, 2009, 24(4): 579-583.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133