Zhao S Z, Liang J J, Suganthan P N, et al. Dynamic multiswarm particle swarm optimizer with local search for large scale global optimization[C]. Proc of 2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE Press, 2008: 3845-3852.
(Yu K P, Mou X M. Improved EKF algorithm for nonlinear time-varying system identification based on feed forward neural network[J]. J of Vibration and Shock, 2010, 29(8): 5-8.)
[6]
Bidyadhar S, Debashisha J. A differential evolution based neural network approach to nonlinear system identification[J]. Applied Soft Computing, 2011, 11: 861-871.
[7]
Rumelhard D E, Hinton G E, Willianms R J. Learning representations by back-propagation errors[J]. Nature, 1986, 323: 533-536.
[8]
Masoud F, Mohammad R R, Mahdi M, et al. The selection of milling parameters by the PSO-based neural network modeling method[J]. The Int J of Advanced Manufacturing Technology, 2011, 57: 49-60.
(Gan X S, DuanMu J S, Meng Y B, et al. Aerodynamic modeling from flight data based on WNN optimized by particle swarm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1209-1217.)
(Wang Q L, Gao X Z, Wang C H, et al. Dynamic multiswarm optimization based on clonal selection and particle swarm[J]. Control and Decision, 2008, 23(9): 1073-1076.)
[13]
(Zhu Q G, Wang H R, Chen Y. Design of feedback control algorithm based on IC-PSO and ISM[J]. J of Optoelectronics ? Laser, 2010, 21(7): 1007-1012.)
[14]
Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proc of the 6th Int Symposium on Micro Machine and Human Science. Piscataway: IEEE, 1995: 39-43.
[15]
Sandhya S. 神经网络在应用科学和工程中的应用—–从基本原理到复杂的模式识别[M]. 史晓霞, 等译. 北京: 机械工业出版社, 2009: 382-399.
[16]
(Sandhya S. Neural networks for applied sciences and engineering—From fundamentals to complex pattern recognition[M]. Shi X X, et al Translate. Beijing: China Machine Press, 2009: 382-399.)