全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于EPSO-BP的Elman网络及其在飞行轨迹预测中的应用

, PP. 1884-1888

Keywords: Elman,网络,融合方法,进食过程,轨迹预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对BP训练方式采用梯度法易导致局部收敛的不足,提出一种融合进食粒子群算法(EPSO)和梯度法的Elman网络优化方法.首先,通过模拟鸟群进食行为得到一种EPSO算法,以改善标准PSO的全局性能;然后,将EPSO用于Elman网络权值的全局优化,同时将梯度法用于EPSO的进食过程局部搜索,以提高解的局部收敛性能;最后,将该网络优化方法用于飞行轨迹预测实验,仿真结果表明了其有效性.

References

[1]  Zhao S Z, Liang J J, Suganthan P N, et al. Dynamic multiswarm particle swarm optimizer with local search for large scale global optimization[C]. Proc of 2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE Press, 2008: 3845-3852.
[2]  朱奇光, 王洪瑞, 陈颖. 基于IC-PSO 和ISM 的反馈控制算法设计[J]. 光电子? 激光, 2010, 21(7): 1007-1012.
[3]  Yu Q Z, Guo J, Zhou C. A system identification using DRNN based on swarm intelligence[J]. Lecture Notes in Computer Science, 2010, 6146(1): 132-139.
[4]  于开平, 牟晓明. 基于前向神经网络的非线性时变系统辨识改进EKF 算法[J]. 振动与冲击, 2010, 29(8): 5-8.
[5]  (Yu K P, Mou X M. Improved EKF algorithm for nonlinear time-varying system identification based on feed forward neural network[J]. J of Vibration and Shock, 2010, 29(8): 5-8.)
[6]  Bidyadhar S, Debashisha J. A differential evolution based neural network approach to nonlinear system identification[J]. Applied Soft Computing, 2011, 11: 861-871.
[7]  Rumelhard D E, Hinton G E, Willianms R J. Learning representations by back-propagation errors[J]. Nature, 1986, 323: 533-536.
[8]  Masoud F, Mohammad R R, Mahdi M, et al. The selection of milling parameters by the PSO-based neural network modeling method[J]. The Int J of Advanced Manufacturing Technology, 2011, 57: 49-60.
[9]  甘旭升, 端木京顺, 孟月波, 等. 基于粒子群优化的WNN飞行数据气动力建模[J]. 航空学报, 2012, 33(7): 1209-1217.
[10]  (Gan X S, DuanMu J S, Meng Y B, et al. Aerodynamic modeling from flight data based on WNN optimized by particle swarm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1209-1217.)
[11]  王巧灵, 高晓智, 王常虹, 等. 基于克隆选择和粒子群思想的动态多群体优化算法[J]. 控制与决策, 2008, 23(9): 1073-1076.
[12]  (Wang Q L, Gao X Z, Wang C H, et al. Dynamic multiswarm optimization based on clonal selection and particle swarm[J]. Control and Decision, 2008, 23(9): 1073-1076.)
[13]  (Zhu Q G, Wang H R, Chen Y. Design of feedback control algorithm based on IC-PSO and ISM[J]. J of Optoelectronics ? Laser, 2010, 21(7): 1007-1012.)
[14]  Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proc of the 6th Int Symposium on Micro Machine and Human Science. Piscataway: IEEE, 1995: 39-43.
[15]  Sandhya S. 神经网络在应用科学和工程中的应用—–从基本原理到复杂的模式识别[M]. 史晓霞, 等译. 北京: 机械工业出版社, 2009: 382-399.
[16]  (Sandhya S. Neural networks for applied sciences and engineering—From fundamentals to complex pattern recognition[M]. Shi X X, et al Translate. Beijing: China Machine Press, 2009: 382-399.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133