全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于遗传算法的最小交叉熵阈值选择方法

, PP. 1805-1810

Keywords: 图像分割,最小交叉熵,阈值,遗传算法,回归程序设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

最小交叉熵阈值法(MCET)在二级阈值中是有效的,但在多极阈值的穷尽搜索中却要付出昂贵的时间代价.鉴于此,提出一种基于遗传算法(GA)的MCET选择方法:在执行图像分割(IS)任务之前,先将IS转化为在一定约束条件下待优化的问题;在寻找待优化问题最优解的计算过程中引入一种回归设计技巧以存储中间结果;使用这种回归设计技巧,在一组标准测试图像上利用GA搜索待优化问题的最优解.实验结果表明,利用所提出的方法获得的多个阈值非常接近于穷尽搜索获得的结果.

References

[1]  汤可宗. 遗传算法与粒子群优化算法的改进及应用研究[D]. 南京: 南京理工大学计算机科学与技术学院, 2011: 56-66.
[2]  (Tang K Z. Modifications and application research on genetic algorithm and particle swarm optimization algorithm[D]. Nanjing: School of Computer Science and Technology, Nanjing University of Science and Technology, 2011: 56-66.)
[3]  Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision Graphics Image Process, 1985, 29(20):273-285.?
[4]  Abutaleb A S. Automatic thresholding of gray level pictures using two dimensional entropy[J]. Computer Vision Graphics Image Process, 1989, 47(13): 22-32.
[5]  Li C H, Tam P K S. An iterative algorithm for minimum cross entropy thresholding[J]. Pattern Recognition Letters, 1998, 19(13): 771-776.?
[6]  Albuquerque M Portes de, Esquef I A, Gesualdi Mello A R. Image thersholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004, 25(9): 1059-1065.?
[7]  Sahoo P, Wilkins C, Yeager J. Threshold selection using renyi’s entropy[J]. Computer Pattern Recognition, 1997, 30(1): 71-84.
[8]  TaoWB, Tian JW, Liu Jian. Image segmentation by threelevel thresholding based on maximum fuzzy entropy and genetic algorithm[J]. Pattern Recognition Letters, 2003, 24(30): 3069-3078.?
[9]  Malyszko A, Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding[J]. Information Sciences, 2010, 180(12): 1138-1158.?
[10]  Kullback S. Information theory and statistics[M]. New York: Dover, 1997: 15-25.
[11]  潘喆. 智能交通x 图像阈值分割方法研究[D]. 南京: 南京航空航天大学信息科学与技术学院, 2010: 1-10.?
[12]  (Pan Z. Research on thresholding segmentation for intelligent traffic images[D]. Nanjing: School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, 2010: 1-10.)
[13]  汪海洋. 基于可见光航空遥感的水下目标自动识别技术研究[D]. 南京: 南京理工大学计算机科学与技术学院, 2008: 64-68. (Wang H Y. Study on underwater object automatic recognition based on aerial visible remote sensing[D]. Nanjing: School of Computer Science and Technology, Nanjing University of Science and Technology, 2008: 64- 68.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133