全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TL-SVM:一种迁移学习新算法

DOI: 10.13195/j.kzyjc.2012.1450, PP. 141-146

Keywords: 迁移学习,分类,支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题.当与某领域相关的新领域出现时,若重新标注新领域,则样本代价昂贵,丢弃所有旧领域数据又十分浪费.对此,基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM,通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型,该方法既继承了基于经验风险最小化最大间隔SVM的优点,又弥补了传统SVM不能进行知识迁移的缺陷.实验结果验证了该算法的有效性.

References

[1]  Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Trans on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[2]  Tao J W, Chung F L, Wang S T. A kernel learning framework for domain adaptation learning[J]. Science China Information Sciences, 2012, 55(9): 1983-2007.
[3]  Tao J W, Chung F L, Wang S T. On minimum distribution discrepancy support vector machine for domain adaptation[J]. Pattern Recognition, 2012, 45(11): 3962-3984.
[4]  Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction[C]. Proc of the 23rd National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 2008: 677-682.
[5]  Xie S, Fan W, Peng J, et al. Latent space domain transfer between high dimensional overlapping distributions[C]. Proc of the 18th Int Conf on World Wide Web. New York: ACM Press, 2009: 91-100.
[6]  Dai W, Yang Q, Xue G, et al. Boosting for transfer learning[C]. Proc of the 24th Int Conf on Machine Learning. New York: ACM Press, 2007: 193-200.
[7]  洪佳眀, 陈炳超, 印鉴. 一种结合半监督Boosting 方法的迁移学习算法[J]. 小型微型计算机系统, 2011, 32(11): 2169-2173.
[8]  (Hong J M, Chen B C, Yin J. Transfer learning via semisupervised Boosting method[J]. J of Chinese Computer Systems, 2011, 32(11): 2169-2173.)
[9]  陈徳品. 基于迁移学习的跨领域排序学习算法研究[D]. 合肥: 中国科学技术大学计算机科学与技术学院, 2010.
[10]  (Chen D P. Knowledge transfer for cross domain learning to rank[D]. Hefei: School of Computer Science and Technology, University of Science and Technology of China, 2010.)
[11]  Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 123-167.
[12]  Pal M, Foody G M. Feature selection for classification of hyper spectral data by SVM[J]. IEEE Trans on Geoscience and Remote Sensing, 2010, 48(5): 2297-2307.
[13]  邓乃杨, 田英杰. 支持向量机—–理论、算法与拓展[M]. 北京: 科学出版杜, 2009: 164-223.
[14]  (Deng N Y, Tian Y J. Support vector machine—Theory, algorithm and extension[M]. Beijing: Chinese Science Press, 2009: 164-223.)
[15]  王骏, 王士同, 王晓明. 基于特征加权距离的双指数模糊子空间聚类算法[J]. 控制与决策, 2010, 25(8): 1207-1210.
[16]  (Wang J, Wang S T, Wang X M. Double-indices fuzzy subspace clustering algorithm based on feature weighted distance[J]. Control and Decision, 2010, 25(8): 1207-1210.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133