全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于动力学特性聚类多维泰勒网的非线性系统辨识与预测

DOI: 10.13195/j.kzyjc.2012.1497, PP. 33-38

Keywords: 多维泰勒网,动力学特性,聚类,非线性系统辨识,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对时变非线性系统难以建模的问题,提出了基于动力学特性聚类的多维泰勒网模型,对系统进行辨识与预测.首先讨论了多维泰勒网模型构造方法和非线性系统动力学特性聚类的定义;然后给出基于动力学特性聚类的多维泰勒网自重构算法;最后通过实例说明基于动力学特性聚类多维泰勒网在实际中应用的方法,实例结果验证了该方法的有效性.

References

[1]  Annakkage U D, Nair N K C, Liang Y F, et al. Dynamic system equivalents: A survey of available techniques[J]. IEEE Trans on Power Delivery, 2012, 27(1): 411-420.
[2]  Cholette M E, Liu J B, Djurdjanovic D, et al. Monitoring of complex systems of interacting dynamic systems[J]. Applied Intelligence, 2012, 37(1): 60-79.
[3]  Ourari M L, Dessaint L A, Do V Q. Dynamic equivalent modeling of large power systems using structure preservation technique[J]. IEEE Trans on Power Systems, 2006, 21(3): 1284-1295.
[4]  王红军, 田铮. 非线性时间序列建模的混合自回归滑动平均模型[J]. 控制理论与应用, 2005, 22(6): 875-881.
[5]  (Wang H J, Tian Z. Mixed autoregressive moving average model for modeling nonlinear time series[J]. Control Theory & Applications, 2005, 22(6): 875-881.)
[6]  熊志斌. 基于ARIMA 与神经网络集成的GDP 时间序列预测研究[J]. 数理统计与管理, 2011, 30(2): 306-314.
[7]  (Xiong Z B. Research on GDP time series forecasting based on integrating ARIMA with neural networks[J]. Application of Statistics and Management, 2011, 30(2): 306-314.)
[8]  王晓兰, 张万宏, 王慧中. 基于小波变换和AR-LSSVM的非平稳时间序列预测[J]. 控制与决策, 2008, 23(3): 357-360.
[9]  (Wang X L, Zhang W H, Wang H Z. Non-stationary time series prediction based on wavelet analysis and AR-LSSVM[J]. Control and Decision, 2008, 23(3): 357-360.)
[10]  Grassberger P, Procaccia I. Characterization of strange attractors[J]. Physical Review Letters, 1983, 50(5): 346-349.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133