全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于熵分布的概率假设密度滤波器高斯混合实现

DOI: 10.13195/j.kzyjc.2012.1520, PP. 89-93

Keywords: 概率假设密度,高斯混合实现,熵分布,分量删减,极大后验

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对概率假设密度滤波器,提出一种基于熵分布的高斯混合实现算法.在该算法中,作为混合参数先验分布的熵分布,主要用在极大后验迭代过程中删减无关混合分量,该删减操作可通过混合权重调整来实现.此外,该算法还能够解决多个具有类似参数的混合分量共同描述一个强度峰值的问题.仿真结果表明,所提出算法优于典型的阈值删减算法.

References

[1]  Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(1): 81-98.
[2]  Clark D, Ruiz I T, Petilot Y, et al. Particle PHD filter multiple target tracking in sonar images[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(1): 409-416.
[3]  Caticha A, Preuss R. Maximum entropy and Bayesian data analysis: Entropic prior distributions[J]. Physical Review E, 2004, 70(4): 1-12.
[4]  Brand M. Structure learning in conditional probability models via an entropic prior and parameter extinction[J]. Neural Computation, 1999, 11(5): 1155-1182.
[5]  Geoffrey Mclachlan D P. Finite mixture models[M]. New York: John Wiley & Sons, 2000.
[6]  Corless R M, Gonnet G H, Hare D, et al. On the lambert W function[J]. Advances in Computational Mathematics, 1996, 5(4): 329-359.
[7]  Figueiredo M, Jain A K. Unsupervised learning of finite mixture models[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396.
[8]  Mahler R. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
[9]  Mahler R. Statistical multisource-multitarget information fusion[M]. Norwood: Artech House, 2007.
[10]  Erdinc O, Willett P, Bar-Shalom Y. The bin-occupancy filter and its connection to the PHD filters[J]. IEEE Trans on Signal Processing, 2009, 57(11): 4232-4246.
[11]  Streit R. Bayes derivation of multitarget intensity filters[C]. The 11th Int Conf on Information Fusion. Coloney, 2008, 11: 1687-1693.
[12]  Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Trans on Signal Processing, 2006, 54(11): 4091-4104.
[13]  Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
[14]  Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(7): 1437-1454.
[15]  闫小喜, 韩崇昭. 基于杂波强度在线估计的多目标跟踪算法[J]. 控制与决策, 2012, 27(4): 507-512.
[16]  (Yan X X, Han C Z. Data association algorithm of infrared search and track system multiple target tracking based on online estimation of clutter intensity[J]. Control and Decision, 2012, 27(4): 507-512.)
[17]  Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans on Signal Processing, 2008, 56(8): 3447-3457.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133