全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于层连优化的新型小世界神经网络

DOI: 10.13195/j.kzyjc.2012.1420, PP. 77-82

Keywords: 小世界网络,多层前向神经网络,层连优化,BP,算法,函数逼近

Full-Text   Cite this paper   Add to My Lib

Abstract:

对多层前向小世界神经网络的网络参数、权值修正策略以及网络结构进行改进,提出一种基于层连优化的小世界神经网络的改进算法.通过对比现有各种不同形式的小世界神经网络,验证了上述改进的必要性.仿真结果表明,改进模型比现有小世界神经网络收敛速度更快,逼近精度更高,模型稳定性更强.

References

[1]  Yang S Z, Luo S W, Li J Y.Building multi-layer small? world neural network[J].Lecture Notes in Computer Science, 2006, 3971: 695-700.
[2]  李小虎, 杜海峰, 张进华, 等.多层前向小世界神经网络及其函数逼近[J].控制理论与应用, 2010, 27(7): 836-842.
[3]  (Li X H, Du H F, Zhang J H, et al. Multilayer feedforward small-world neural networks and its function approximation[J]. Control Theory & Applications, 2010, 27(7): 836-842.)
[4]  李小虎, 杜海峰, 张进华, 等.多层前向小世界神经网络的逼近与容错性能[J].西安交通大学学报, 2010, 44(7): 59-63.
[5]  (Zhang R C, Li C. Model of NW multilayer feedforward small-world artificial neural networks and it’s applied[J]. Computer Simulation, 2008, 28(10): 95-98.)
[6]  欧海涛, 张文渊, 杨煜普, 等. 高速公路交通流的RBF 神经网络建模[J]. 上海交通大学学报, 2000, 34(5): 665-668.
[7]  (Ou H T, Zhang W Y, Yang Y P, et al. Freeway traffic flow modeling with RBF neural network[J]. J of Shanghai Jiaotong University, 2000, 34(5): 665-668.)
[8]  Watts D J, Strogatz S H.Collective dynamics of small-world networks[J]. Nature, 1998, 393(4): 440-442.
[9]  Newman M E J, Watts D J.Renormalization group analysis of the small-world network model[J].Physics Letters A, 1999, 263(4): 341-346.
[10]  Zheng P S, Tang W S, Zhang J X.A simple method for designing efficient small-world neural networks[J]. Neural Networks, 2010(23): 155-159.
[11]  Morelli L G, Abramson G, Kuperman M N.Associative memory on a small-world neural network[J].European Physical Journal B, 2004, 38: 495-500.
[12]  Li C G.Memorizing morph patterns in small-world neuronal network[J]. Physica A, 2009, 388(15): 240-246.
[13]  Li S W.Analysis of contrasting neural network with small-world network[C]. 2008 Int Seminar on Future Information Technology and Management Engineering. UK: Leicestershire, 2008: 57-60.
[14]  Simard D, Nadeau L, Kroger H.Faster learning in?small-world neural networks[J].Physics Letters A, 2005, 336(1): 8-15.
[15]  (Li X H, Du H F, Zhang J H, et al. Approximation and fault-tolerance performances of multilayer, feedforward small world neural network[J]. J of Xi’an Jiaotong University, 2010, 44(7): 59-63.)
[16]  张瑞成, 李冲. 小世界人工神经网络模型及其应用研究[J]. 计算机仿真, 2008, 28(10): 95-98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133