全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种改进的直觉模糊熵公理化定义和构造公式

DOI: 10.13195/j.kzyjc.2012.1549, PP. 470-474

Keywords: 直觉模糊集,直觉模糊熵,隶属度,非隶属度,未知度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有的直觉模糊熵的公理化定义和构造公式未能全面体现直觉模糊集模糊性的缺陷进行分析,提出一种改进的直觉模糊熵的公理化定义,据此构造一个新的直觉模糊熵的计算公式,并将该公式与现有直觉模糊熵公式进行比较.算例分析表明,所提出的熵公式能够更充分地反映直觉模糊集的不确定性和未知性程度.

References

[1]  王坚强, 王佩. 基于直觉模糊熵的直觉语言多准则决策方法[J]. 控制与决策, 2012, 27(11): 1694-1698.
[2]  (Wang J Q, Wang P. Intuitionistic linguistic fuzzy multi-criteria decision-making method based on intuitionistic fuzzy entropy[J]. Control and Decision, 2012, 27(11): 1694-1698.)
[3]  Sun M, Liu J. New entropy and similarity measures for interval-valued intuitionistic fuzzy sets[J]. J of Information & Computational Science, 2012, 18(9): 5799-5806.
[4]  魏翠萍, 高志海, 郭婷婷. 一个基于三角函数的直觉模糊熵公式[J]. 控制与决策, 2012, 27(4): 571-574.
[5]  (Wei C P, Gao Z H, Guo T T. An intuitionistic fuzzy entropy measure based on trigonometric function[J]. Control and Decision, 2012, 27(4): 571-574.)
[6]  Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3): 305-316.
[7]  Szmidt E, Kacprzyk J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3): 467-477.
[8]  HungWL, YangMS. Fuzzy entropy on intuitionistic fuzzy sets[J]. Int J of Intelligent Systems, 2006, 21(4): 443-451.
[9]  Zhang H Y, Zhang W X, Mei C L. Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure[J]. Knowledge-based Systems, 2009, 22(6): 449-454.
[10]  Farhadinia B. A theoretical development on the entropy of interval-valued fuzzy sets based on the intuitionistic distance and its relationship with similarity measure[J]. Knowledge-based Systems, 2013, 26(1): 79-84.
[11]  张英俊, 马培军, 苏小红, 等. 属性权重不确定条件下的区间直觉模糊多属性决策[J]. 自动化学报, 2012, 38(2): 220-228.
[12]  (Zhang Y J, Ma P J, Su X H, et al. Multi-attribute decision making with uncertain attribute weight information in the framework of interval-valued intuitionistic fuzzy set[J]. Acta Automatica Sinica, 2012, 38(2): 220-228.)
[13]  Xia M M, Xu Z S. Entropy/cross entropy based group decision making under intuitionistic fuzzy environment[J]. Information Fusion, 2012, 13(1): 31-47.
[14]  Li J Q, Deng G N, Li H X, et al. The relationship between similarity measure and entropy of intuitionistic fuzzy sets[J]. Information Sciences, 2012, 188(1): 314-321.
[15]  Zhang Q S, Liu F C, Wu L H, et al. Information entropy, similarity measure and inclusion measure of intuitionistic fuzzy sets[J]. Communications in Computer and Information Science, 2012, 307(1): 392-398.
[16]  Zhang Q S, Liu F C, Wu L H. Entropy, similarity measure and inclusion measure of intuitionistic fuzzy sets and their relationships[J]. Int J of Computational Intelligence Systems, 2012, 3(3): 519-529.
[17]  Ye J. Two effective measures of intuitionistic fuzzy entropy[J]. Computing, 2010, 87(1/2): 55-62.
[18]  Khaleie S, Fasanghari M. An intuitionistic fuzzy group decision making method using entropy and association coefficient[J]. Soft Computing, 2012, 16(7): 1197-1211.
[19]  彭祖明. Vague 集模糊熵的一个新模型[J]. 西南师范大学学报: 自然科学版, 2012, 37(10): 13-17.
[20]  (Peng Z M. On a new model of vague set’s fuzzy entropy[J]. J of Southwest China Normal University: Natural Science Edition, 2012, 37(10): 13-17.)
[21]  邱菀华. 管理决策熵学及其应用[M]. 北京: 中国电力出版社, 2010: 158-159.
[22]  (QiuWH. Entropy of management decision making and its application[M]. Beijing: China Electric Power Press, 2011: 158-159.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133