Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1999: 23-103.
[2]
Liu Y, Chen W, Wang H, et al. Adaptive control of nonlinear time-varying processes using selective recursive kernel learning method[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2773-2780.
[3]
Ma J, James T, Simon P. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2704.
[4]
Liu Y, Wang H, Yu J, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. J of Process Control, 2010, 20(2): 181-194.
(Mu Z X, Zhang R M, Sun C Y. LS-SVM predictive control based on PSO for nonlinear systems[J]. Control Theory & Applications, 2010, 27(2): 164-168.)
[10]
Yuzgec U, Becerikli Y, Turker M. Dynamic neural-network-based model-predictive control of an industrial baker’s yeast drying process[J]. IEEE Trans on Neural Networks, 2008, 19(7): 1231-1242.
[11]
Noriega J R, Wang H. A direct adaptive neural-network control for unknown nonlinear systems and its application[J]. IEEE Trans on Neural Networks, 1998, 9(1): 27-34.
[12]
舒迪前. 预测控制系统及其应用[M]. 北京: 机械工业出版, 1996: 1-36.
[13]
(Shu D Q. Predictive control system and its application[M]. Beijing: China Machine Press, 1996: 1-36.)
[14]
席裕庚. 预测控制[M]. 北京: 国防工业出版社, 1993: 5-18.
[15]
(Xi Y G. Predictive control[M]. Beijing: National Defense Industry Press, 1993: 5-18.)
[16]
Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764.
[17]
Zhong W, Pi D. Support vector machine based nonlinear model multi-step-ahead optimizing predictive control[J]. J of Central South University of Technology, 2005, 12(5): 591-595.
(Guo Z K, Song Z Q, Mao J Q. Nonlinear generalized predictive control based on least square support vector machine[J]. Control and Decision, 2009, 24(4): 520-525.)
[20]
Shin J, Jin K H, Kim Y. Adaptive support vector regression for UAV flight control[J]. Neural Networks, 2011, 24(1): 109-120.
[21]
Liu Y, Gao Y, Gao Z, et al. Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form[J]. Industrial & Engineering Chemistry Research, 2010, 49(17): 8209-8218.