全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于在线支持向量回归的非线性模型预测控制方法

, PP. 460-464

Keywords: 非线性模型,预测控制,在线支持向量回归,最速下降原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非线性模型预测控制中离线模型难以适应非线性对象实时变化的缺点,提出一种基于在线支持向量回归的非线性模型预测控制方法.该方法通过在线支持向量回归离线训练与在线学习相结合的方式,建立具有在线校正特性的预测模型,同时采用最速下降原理滚动优化非线性模型预测控制的目标函数,求得多步控制量.通过对非线性对象的控制结果表明,所提出方法有效且具有良好的自适应性.

References

[1]  Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1999: 23-103.
[2]  Liu Y, Chen W, Wang H, et al. Adaptive control of nonlinear time-varying processes using selective recursive kernel learning method[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2773-2780.
[3]  Ma J, James T, Simon P. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2704.
[4]  Liu Y, Wang H, Yu J, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. J of Process Control, 2010, 20(2): 181-194.
[5]  王寅, 荣冈, 王树青. 基于TS 模糊模型的非线性预测控制策略[J]. 控制理论与应用, 2002, 19(4): 599-603.
[6]  (Wang Y, Rong G, Wang S Q. Nonlinear predictive control strategy based on T-S fuzzy model[J]. Control Theory & Applications, 2002, 19(4): 599-603.)
[7]  Dostál Z. Optimal quadratic programming algorithms: With applications to variational inequalities[M]. New York: Springer, 2009: 27-35.
[8]  穆朝絮, 张瑞民, 孙长银. 基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法[J]. 控制理论与应用, 2010, 27(2): 164-168.
[9]  (Mu Z X, Zhang R M, Sun C Y. LS-SVM predictive control based on PSO for nonlinear systems[J]. Control Theory & Applications, 2010, 27(2): 164-168.)
[10]  Yuzgec U, Becerikli Y, Turker M. Dynamic neural-network-based model-predictive control of an industrial baker’s yeast drying process[J]. IEEE Trans on Neural Networks, 2008, 19(7): 1231-1242.
[11]  Noriega J R, Wang H. A direct adaptive neural-network control for unknown nonlinear systems and its application[J]. IEEE Trans on Neural Networks, 1998, 9(1): 27-34.
[12]  舒迪前. 预测控制系统及其应用[M]. 北京: 机械工业出版, 1996: 1-36.
[13]  (Shu D Q. Predictive control system and its application[M]. Beijing: China Machine Press, 1996: 1-36.)
[14]  席裕庚. 预测控制[M]. 北京: 国防工业出版社, 1993: 5-18.
[15]  (Xi Y G. Predictive control[M]. Beijing: National Defense Industry Press, 1993: 5-18.)
[16]  Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764.
[17]  Zhong W, Pi D. Support vector machine based nonlinear model multi-step-ahead optimizing predictive control[J]. J of Central South University of Technology, 2005, 12(5): 591-595.
[18]  郭振凯, 宋召青, 毛剑琴. 基于最小二乘支持向量机的非线性广义预测控制[J]. 控制与决策, 2009, 24(4): 520-525.
[19]  (Guo Z K, Song Z Q, Mao J Q. Nonlinear generalized predictive control based on least square support vector machine[J]. Control and Decision, 2009, 24(4): 520-525.)
[20]  Shin J, Jin K H, Kim Y. Adaptive support vector regression for UAV flight control[J]. Neural Networks, 2011, 24(1): 109-120.
[21]  Liu Y, Gao Y, Gao Z, et al. Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form[J]. Industrial & Engineering Chemistry Research, 2010, 49(17): 8209-8218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133