全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

准则关联的直觉模糊多准则决策方法

, PP. 1348-1352

Keywords: Choquet,积分,模糊测度,直觉三角模糊数,准则关联

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对准则值为直觉三角模糊数,准则间相互关联的多准则决策问题,提出基于Choquet积分的决策方法.该方法首先利用偏好函数定义方案在各准则下的优序关系,若模糊测度已知,则直接利用Choquet积分进行求解;若准则集上的模糊测度未知,则利用部分决策信息和最小方差法建立二次规划模型,求解模糊测度,再利用Choquet积分进行决策.最后通过实例表明了该方法的有效性和可行性.

References

[1]  Ming-Hung Shu,Ching-Hsue Cheng.Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly[J].Micro-electronics Reliability 46(2006) 2139-2148 [2]Deng-Feng Li.A note on “using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly”[J].Microelextronics Reliability 48(2008)1741 [3]王坚强,张忠.信息不完全确定的多准则直觉模糊决策的折衷解法.in:Proceedings of 2006 Chinese Control and Decision Conference,1195-1198 [4]王坚强,张忠.基于直觉模糊数的信息不完全的多准则决策规划方法[J].控制与决策,2008,23(10):1145-1148 [5]王坚强,张忠.基于直觉梯形模糊数的信息不完全确定的多准则决策方法[J].控制与决策,2009,24(02):226-230 [6]Michel Grabisch. Fuzzy measures and integrals in MCDA, in: J. Figueira, S. Greco, M. Ehrgott (Eds), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer Science+Business Media, Inc, 2005,pp. 563-608. [7]Michel Grabisch. The application of fuzzy integrals in multicriteria decision making[J].European Journal of Operational Research 89(1996)445-456 [8]F.Modave, M.Grabisch.,A Choquet Integral Representation in Multicriteria Decision Making. AAAI Technical Report FS-97-04 [9]Silvia Angilella, Salvatore Greco, Fabio Lamantia. Assessing non-additive utility for multicriteria decision aid[J].European Journal of Operational Research 158(2004)734-744 [10]Silvia Angilella, Salvatore Greco, Benedetto Matarazzo. Non-additive robust ordinal regression:A multiple criteria decision model based on the Choquet integral[J].European Journal of Operational Research 201(2010)277-288 [11]Tufan Demirel, Nihan Cetin Demirel, Cengiz Kahraman. Multi-criteria warehouse location selection using Choquet integral[J].Expert Systems with Applications 37(2010)3943-3952 [12]Jiann Liang Yang, Huan Neng Chiu, Gwo-Hshiung Tzeng. Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships[J].Information Sciences 178(2008)4166-4183. [13]Zhang Guang-Quan. Fuzzy number-valued fuzzy measure and fuzzy number-valued fuzzy integral on the fuzzy set[J].Fuzzy sets and systems 49(1992)357-376 [14]Chao Zhang, Cun-bao Ma, Jia-dong Xu. A new fuzzy MCDM method based on trapezoidal fuzzy AHP and hierarchical fuzzy integral[J].Fuzzy Systems and Knowledge Discovery. Second International Conference, FSKD 2005, pp:466-474. [15]Chunqiao Tan,Xiaohong Chen,Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making[J].Expert Systems with Applications 37(2010)149-157 [16]谭春桥,陈晓红,基于直觉模糊值Sugeno积分算子的多属性群决策[J].北京理工大学学报,2009,29(1):85~89 [17]Zeshui Xu. Choquet Integrals of weighted intuitionistic fuzzy information, Information Sciences(2009), doi:10.1016/j.ins.2009.11.011 [18]Michel Grabisch, Ivan Kojadinovic, Patrick Meyer. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package[J].European Journal of Operational Research 186(2008)766-785 [19]Kojadinovic. Minimum variance capacity identification[J].European Journal of Operational Research 177(1)(2007)498-514

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133