全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于频繁模式树的分布式关联规则挖掘算法

, PP. 618-622

Keywords: 数据挖掘,频繁模式树,全局频繁项集,关联规则

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的.

References

[1]  陈志泊,韩慧,王建新. 数据仓库与数据挖掘[M]. 北京: 清华大学出版社, 2009. [2]陶利民,黄林鹏.Cherry:一种无须子集检查的闭合频繁集挖掘算法[J].软件学报,2008,19(2): 379-388. [3]Zaki MJ. Parallel and distributed association mining: A survey[J]. IEEE Concurrency, Special Issue on Parallel Mechanisms for Data Mining, December 1999, 7(4):14~25. [4]Park JS, Chen MS, Yu PS. Efficient parallel data mining for association rules[A]. In: Proceedings of the 4th International Conference on Information and Knowledge Management[C], Baltimore, Maryland, 1995. 31~36. [5]Agrawal R, Shafer JC. Parallel mining of association rules[J]. IEEE Transaction on Knowledge and Data Engineering, 1996,8(6):962~969. [6]Cheung DW, Han JW, Ng WT, Tu YJ. A fast distributed algorithm for mining association rules[A]. In: Proceedings of IEEE 4th International Confence on Management of Data[C], Miami Beach, Florida, 1996.31~34. [7]Han JW, Pei J, Yin Y. Mining frequent patterns without Candidate Generation[C]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of data. ACM Press, 2000. 1~12. [8]郭宇红,童云海,唐世渭,杨冬青.基于FP-Tree的反向频繁项集挖掘[J].软件学报,2008,19(2):338-350. [9]俞勇. Web数据挖掘[M]. 北京: 清华大学出版社, 2009. [10]Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. In: Proceedings of the 20th International Conference Very Large DataBase, Santiago, Chile, 1994, 487~499. [11]肖波,徐前方,蔺志青,郭军,李春光.可信关联规则及其基于极大团的挖掘算法[J].软件学报,2008,19(10):2597-2610. [12] Bayardo RJ. Efficiently Mining Long Patterns from Databases[C]. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998. 85-93. [13]Schuster A,Wolff R. Communication-efficient distributed mining of association rules[C]. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2001. 473~584. [14] Bo H, Peng T. Fast mining of maximum frequent itemsets in distributed multimedia database [C]. Second Workshop on Digital Media and its Application in Museum & Heritage, Chongqing, 2007. 359-364. [15]Han JW, Kamber M. Data Mining: Concepts and Techniques[M]. Beijing: High Educattion Press, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133