全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

引入人工蜂群搜索算子的粒子群算法

, PP. 833-838

Keywords: 粒子群优化,种群初始化,搜索算子,人工蜂群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准粒子群算法易出现早熟现象和收敛速度慢等问题,提出一种引入人工蜂群搜索算子的粒子群算法.首先利用人工蜂群搜索算子很强的探索能力,对粒子搜索到的历史最优位置进行搜索以帮助算法快速跳出局部最优点;然后,为了提高算法的全局收敛速度,提出一种基于混沌和反学习的初始化方法.通过12个标准测试函数的仿真实验并与其他算法相比较,所得结果表明所提出的算法具有较快的收敛速度和很强的跳出局部最优的能力.

References

[1]  Kennedy J, Eberhartr C. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Piscataway, 1995: 1942-1948. [2] Bergh F, Engelbreeht A P. A cooperative approaeh to partiele swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 225-239. [3] Ratnaweera A, Halgamuge S, Waton H C. Self-organizing hierarehieal partiele Swarm optimizer with time-varying Acceleration coef?eients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240-255. [4] Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm [J]. Chaos Solitons & Fractals, 2008, 37(3): 698-705. [5] Jiang C W, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization [J]. Mathematics and Computers in Simulation, 2005, 68(1): 57-65. [6] Fan S, Zahara E. Hybrid simplex search and particle swarm optimization for unconstratined optimization problems [J]. European Journal of Operational Research, 2007, 181 (2): 527-548. [7] 张顶学, 廖锐全. 一种基于种群速度的自适应粒子群算法[J].控制与决策, 2009, 23(7): 756-761. (Zhang D X, Liao R Q. Adaptive particle swarm optimization algorithm based on population velocity[J]. Control and Decision, 2009, 23(7): 756-761.) [8] Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3): 281-295. [9] Zhan Z H, Zhang J, Li Y, Chung H H. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2009, 39 (6): 1362-1381. [10] Liu B, Wang L, Jin Y H, Tang F, Huang D X. Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 2005, 25 (2): 1261-1271. [11] Rahnama S, et al. Opposition-Based Differential Evolution [J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (1): 64-79. [12] Karaboga D, Basturk B. A powerful and ef?cient algorithm for numerical function optimization: arti?cial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39 (3): 459-171. [13] Zhu G P, Kwong S. Gbest-guided arti?cial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173. [14] Kennedy J, Mendes R. Population structure and particle swarm performance [C]. Proc of IEEE Congress on Evolutionary Computation. Honolulu, HI, 2002: 1671- 1676. [15] Mendes R, Kennedy J, Neves J.The fully informed particle swarm: Simpler maybe better. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210. [16] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer [C]. Proc of IEEE Swarm Intelligence Symposium, 2005: 124-129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133