全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部搜索与混合多样性策略的多目标粒子群算法

, PP. 813-818

Keywords: 多目标优化,粒子群算法,增广Lagrange,乘子法,Maximin,适应值函数,拥挤距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高算法的收敛性与非支配解集的多样性,提出一种基于局部搜索与混合多样性策略的多目标粒子群算法(LH-MOPSO).该算法使用增广Lagrange乘子法对非支配解进行局部搜索以快速接近Pareto最优解;利用基于改进的Maximin适应值函数与拥挤距离的混合多样性策略对非支配解集进行维护以保留解的多样性,同时引入高斯变异算子以避免算法早熟收敛;最后针对多目标约束优化问题,给出一种有效的约束处理方法.实验研究表明该算法具有良好的优化性能.

References

[1]  公茂果, 焦李成, 杨咚咚等. 进化多目标优化算法研究[J].软件学报, 2009, 20(2): 271-289. (Gong M G, Jiao L C, Yang D D et al. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20(2): 271-289.) [2] Reyes-Sierra M, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the- Art[J]. International Journal of Computational Intelligence Research, 2006, 2(3): 287-308. [3] Li X D. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function[C]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2004), Washington, USA, 2004: 117-128. [4] 徐鸣, 沈希, 马龙华等. 一种多目标粒子群改进算法的研究[J].控制与决策, 2009, 24(11): 1713-1718. (Xu M, Shen X, Ma L H. Research on modified multi- objective particle swarm optimization[J]. Control and Decision, 2009, 24(11): 1713-1718.) [5] Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2003), 2003: 37-48. [6] 王辉, 钱峰. 基于拥挤度与变异的动态微粒群多目标优化算法[J].控制与决策, 2008, 23(11): 1238-1242. (Wang H, Qian F. Improved PSO-based multi-objective optimization by crowding with mutation and particle swarm optimization dynamic changing[J]. Control and Decision, 2008, 23(11): 1238-1242.) [7] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279. [8] Lechuga M S, Rowe J. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C], IEEE Congress on Evolutionary Computation, Edinburgh: IEEE Press, 2005: 1204-1211. [9] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of the IEEE international Conference on Neural Networks, Piscataway, USA, 1995: 1942-1948. [10] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proceedings of the Conference on Evolutionary Computation, San Diego, CA, 2000: 84-88. [11] 张勇, 巩敦卫, 张婉秋. 一种基于单纯形法的改进微粒群优化算法及其收敛性分析[J].自动化学报, 2009, 35(3): 289-298. (Zhang Y, Gong DW, ZhangWQ. A simplex method based improved particle swarm optimization and analysis on its global convergence[J]. ACTA AUTOMATICA SINICA, 2009, 35(3): 289-298.) [12] Fan S K S, Zahara E. A hybrid simplex search and particle swarm optimization for unstrained optimization[J]. European Journal of Operational Research, 2007, 181: 527-548. [13] 陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2005. (Chen B L. Optimization Theory and Algorithms (2nd edition)[M]. Beijing: Tsinghua University Press, 2005.) [14] Balling R. The maximin fitness function; Multiobjective city and regional planning[C]. Proceedings of EMO 2003, 2003: 1-15. [15] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [16] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133