L. H. Ungar, Powell, B. A., and Kamens, S. N., “Adaptive networks for fault diagnosis and process control.,” Computers & Chemical Engineering, vol. 14, pp. 561-572, 1990. [2] C. C. L. F.C. Chen “Adaptively controlling nonlinear continuous-time systems using multiplayer neural networks,” IEEE Transactions on Automatic Control, vol. 39, pp. 1306-1310, 1994. [3] M. M. Polycarpou, Ioannou, P. A., “A robust adaptive nonlinear control design,” Automatica, vol. 32, no. 3, pp. 423-427, 1996. [4] C. K. a. F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions on systems, man and cybernetics, vol. 30, no. 6, pp. 753-766, 2000. [5] T. Zhang, Ge, S.S. & Hang, C.C., “Adaptive neural network control for strict-feedback nonlinear systems using backstepping design,” Automatica, vol. 36, no. 12, pp. 1835-1846, 2000. [6] I. K. a. P. K. Krstic, Nonlinear and Adaptive Control Design, New York: John Wiley & Sons, 1995. [7] Ge, S. S., Wang, J. Robust adaptive tracking for time-varying uncertain nonlinear system with unknown control coefficients [J]. IEEE Transactions on Automatic Control, 2003, 48(8): 1462-1469. [8] Ge, S. S., Hong, F., and Lee, H. L. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients [J]. IEEE Translations on system, man, and cybernetics, 2004, 34(1): 499-516. [9] D.-S. C. a. H.-C. C. Vadim I. Utkin, “ Block control principle for mechanical systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 122, no. 1, pp. 1-10, 2000. [10] B. C.-T. a. S. J. D. A.Loukianov, “Nonlinear sliding surface design in the presence of uncertainty,” in Proceedings of the 14th IFAC, Beijing, P.R.China, 1999, pp. 55-60. [11] J. Park, Sandberg,I.W., “Universal Approximation Using Radial Basis Function Networks,” Neural Computation, vol. 3, no. 2, pp. 246-257, 1991.