Oliver H, Michael S, Marchiori K. Scale-free networks: The impact of fat tailed degree distribution on diffusion and communication processes[J]. Wirtschaftsinformatik, 2006, 48(4): 267-275.
[2]
Mishkovski I, Biey M, Kocarev L. Vulnerability of complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(1): 34-349.
[3]
Zheng J F, Gao Z Y, Zhao X M. Modeling cascading failures in congested complex networks[J]. Physica A, 2007, 385(2): 700-706.
[4]
Yang R, Wang W X, Lai Y C. Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks[J]. Physical Review E, 2009, 79(2): 026112(1)-026112(6).
(Li Y, Wu J, Tan Y J. Invulnerability study for cascading failure of the logistics support networks of capacity evenly distributed[J]. J of Systems Engineering, 2010, 25(6): 853-860.)
(Yan Y, Liu X, Zhuang X T. Cascading failure model and method of supply chain based on complex network[J]. J of Shanghai Jiaotong University, 2010, 44(3): 322-325.)
[9]
Christian K, Dirk H, Geoffrey B W. Scaling laws in urban supply networks[J]. Physica A, 2006, 363(1): 89-95.
[10]
Wang J, Liu Y H, Jiao Y, et al. Cascading dynamics in congested complex networks[J]. European Physical J, Part B, 2009, 67(1): 95-100.
[11]
SoléR V, Casals M R, Murtra B C, et al. Robustness of the European power grids under intentional attack[J]. Physical Review E, 2008, 77(2): 026102(1)-026102(7).
[12]
Wang J W, Rong L L. Robustness of the western United States power grid under edge attack strategies due to cascading failures[J]. Safety Science, 2011, 49(6): 807-812.
[13]
Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[14]
Boguna M, Pastor-Satorras R, Vespignani A. Absence of epidemic threshold in scale-free networks with degree correlations[J]. Physical Review Letters, 2003, 90(2): 028701(1)-028701(4).