全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离散随机Markov跳跃系统的广义Lyapunov方程解的性质

DOI: 10.13195/j.kzyjc.2013.0651, PP. 1693-1697

Keywords: 离散随机Markov,跳跃系统,广义Lyapunov,方程,?表示谱技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对离散随机Markov跳跃系统,基于?表示方法研究了其对应的广义Lyapunov方程解的性质.首先,证明了广义Lyapunov方程存在唯一实对称矩阵序列解的充分必要条件是系统的谱不包含零特征值;然后,在系统的谱包含零特征值的情况下,分析了广义Lyapunov方程解的结构;最后,通过数值仿真表明了所得结论的正确性.

References

[1]  Costa O L V, Fragoso M D, Marques R P. Discrete-time Markovian jump linear systems[M]. London: Springer-Verlag, 2005.
[2]  Mao X, Yuan C. Stochastic differential equations with Markovian switching[M]. London: Imperial College Press, 2006.
[3]  Li Z Y, Zhou B, Wang Y, et al. On eigenvalue sets and convergence rate of It?o stochastic systems with Markovian switching[J]. IEEE Trans on Automatic Control, 2011, 56(5): 1118-1124.
[4]  Sheng L, Gao M, Zhang W. Spectral characterisation for stability and stabilisation of linear stochastic systems with Markovian switching and its applications[J]. IET Control Theory and Applications, 2013, 7(5): 730-737.
[5]  Zhou K, Doyle J C, Glover K. Robust and optimal control[M]. New Jersey: Prentice Hall, 1996.
[6]  Zhang W, Zhang H, Chen B S. Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion[J]. IEEE Trans on Automatic Control, 2008, 53(7): 1630-1642.
[7]  ZhangW, Xie L. Interval stability and stabilization of linear stochastic systems[J]. IEEE Trans on Automatic Control, 2009, 54(4): 810-815.
[8]  Zhang W, Chen B S. ?-representation and applications to generalized Lyapunov equations and linear stochastic systems[J]. IEEE Trans on Automatic Control, 2012, 57(12): 3009-3022.
[9]  Dragan V, Morozan T, Stoica A M. Mathematical methods in robust control of discrete-time linear stochastic systems[M]. New York: Springer, 2010.
[10]  Shen L, Sun J, Wu Q. Observability and detectability of discrete-time stochastic systems with Markovian jump[J]. Systems & Control Letters, 2013, 62(1): 37-42.
[11]  Bellman R. Introduction to matrix analysis[M]. Philadelphia: SIAM, 1995.
[12]  Hou T, Zhang W, Ma H. Essential instability and essential destabilisation of linear stochastic systems[J]. IET Control Theory & Applications, 2011, 5(2): 334-340.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133