(Du J, Xu L Z, Cao Y J, et al. Short-term load forecasting model based on Volterra filter[J]. Control and Decision, 2009, 24(12): 1903-1908.)
[3]
Ghiassia M, Zimbrab D K, Saidane H. Medium term system load forecasting with a dynamic artificial neural network model[J]. Electric Power Systems Research, 2006, 76(5): 302-316.
[4]
Moody J, Darken C. Fasting learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.
[5]
Elattar E E, Goulermas J Y, Wu Q H. Electric load fore-casting based on locally weighted support vector regression[J]. IEEE Trans on SMC, 2010, 40(4): 438-447.
[6]
Chen B J, Chang M W, Lin C J. Load forcasting using support vector machines: A study on eunite competition 2001[J]. IEEE Trans on Power Load Systems, 2004, 19(4): 1821-1830.
[7]
Saunders C, Gammerman A, Volk V. Ridge regression algorithm in dual variables[C]. Proc of the 15th Int Conf on Machine Learning. Madison-Wisconsin: Morgan Kaufmann Publishers, 1998: 515-521.
[8]
Scholkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
[9]
Rosipal R. Kernel partial least squares for nnlinear regression and discrimination[J]. Neural Network World, 2003, 13(3): 291-300.
[10]
Rosipal R, Girolami M. An expectation-maximization approach to nonlinear component analysis[J]. Neural Computation, 2001, 13(3): 505-510.
[11]
Franc V, Hlavac V. Greedy algorithm for a training set reduction in the kernel methods[C]. Proc of Computer Analysis of Images and Patterns. Berlin: Springer, 2003: 426-433.
[12]
Franc V. Optimization algorithms for kernel methods[D]. Prague: Department of Cybernetics, Czech Technical University, 2005.
[13]
Sincak P. World-wide competition within the EUNITE network[EB/OL]. (2001-08-05)[2012-11-06]. http://neuron.tuke.sk/competition/index.php.