全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于旋转矩阵描述的航天器无角速度测量姿态跟踪无源控制

DOI: 10.13195/j.kzyjc.2013.0375, PP. 1628-1632

Keywords: 姿态跟踪,旋转矩阵,无源控制,无速度反馈,Barbalat引理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用系统无源性和旋转矩阵性质研究无角速度测量下的姿态跟踪控制问题.为了避免姿态参数的奇异性和模糊性,提出基于三维特殊正交群(SO(3))的控制策略.首先利用旋转矩阵建立姿态跟踪误差方程,然后分析了系统的内在无源性,从而揭示了闭环系统的稳定性.当角速度无法获得时,利用新的无源滤波提出一种无角速度测量控制律,并给出了严格的Lyapunov稳定性分析.最后,通过数值仿真验证了所提出的控制方法的有效性.

References

[1]  Wen J T, Kreuta-Delgado K. The attitude control problem[J]. IEEE Trans on Automatic Control, 1991, 36(10): 1148-1162.
[2]  Du H B, Li S H. Finite-time attitude stabilization for a spacecraft using homogeneous method[J]. J of Guidance Control and Dynamics, 2012, 35(3): 740-748.
[3]  程小军, 崔祜涛, 徐瑞, 等. 几何约束下的航天器姿态机动控制[J]. 控制与决策, 2012, 27(5): 724-730.
[4]  (Cheng X J, Cui H T, Xu R, et al. Attitude maneuver control of spacecraft under geometric constraints[J]. Control and Decision, 2012, 27(5): 724-730.)
[5]  Bhat S, Bernstein D. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[J]. Systems and Control Letters, 2000, 39(1): 63-70.
[6]  Chaturvedi N, Sanyal A, Mcclamroch N. Rigid-body attitude control[J]. IEEE Control System Magazine, 2011, 31(3): 30-51.
[7]  Fragopoulos D, Innocenti M. Stability considerations in quaternion attitude control using discontinuous Lyapunov functions[J]. IEE Proc of Control Theory and Applications, 2004, 151(3): 253-258.
[8]  Mayhew C G, Sanfelice R G, Teel A R. Quaternion-based hybrid control for robust global attitude tracking[J]. IEEE Trans on Automatic Control, 2011, 56(11): 2555-2566.
[9]  Mayhew C G, Sanfelice R G, Sheng J S, et al. Quaternion-based hybrid feedback for robust global attitude synchronization[J]. IEEE Trans on Automatic Control, 2012, 57(8): 2122-2127.
[10]  Schlanbusch R, Loria A, Nicklasson P J. On the stability and stabilization of quaternion equilibria of rigid bodies[J]. Automatica, 2012, 48(12): 3135-3141.
[11]  Sanyal A K, Fosbury A, Chaturvedi N A, et al. Inertia-free spacecraft attitude trajectory tracking with disturbance rejection and almost global stabilization[J]. J of Guidance Control and Dynamics, 2009, 32(4): 1167-1178.
[12]  Wang H L, Xie Y C. On passivity based attitude synchronization with communication time delays[C]. The 18th IFAC World Congress. Milano: IFAC, 2011: 8774-8779.
[13]  Lee T. Exponential stability of an attitude tracking control system on SO(3) for large-angle rotation maneuvers[J]. Systems and Control Letters, 2012, 61(1): 231-237.
[14]  Lizarralde F, Wen J T. Attitude control without angular velocity measurement: A passivity approach[J]. IEEE Trans on Automatic Control, 1996, 41(13): 468-472.
[15]  Tsiotras P. Further passivity results for the attitude control problem[J]. IEEE Trans on Automatic Control, 1998, 43(11): 1597-1600.
[16]  Costic B T, Dawson D M, de Queiroz M S, et al. Quaternion-based adaptive attitude tracking controller without velocity measurements[J]. J of Guidance Control and Dynamics, 2001, 24(6): 1214-1222.
[17]  Tayebi A. Unit quaternion-based output feedback for the attitude tracking problem[J]. IEEE Trans on Automatic Control, 2008, 53(6): 1516-1520.
[18]  Zou A M, Kumar K D. Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network[J]. Acta Astronautica, 2010, 66(5/6): 769-779.
[19]  Khalil H. Nonlinear systems[M]. New Jersey: Prentice-Hall, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133